Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Nature ; 629(8012): 567-572, 2024 May.
Article in English | MEDLINE | ID: mdl-38720079

ABSTRACT

Entanglement has evolved from an enigmatic concept of quantum physics to a key ingredient of quantum technology. It explains correlations between measurement outcomes that contradict classical physics and has been widely explored with small sets of individual qubits. Multi-partite entangled states build up in gate-based quantum-computing protocols and-from a broader perspective-were proposed as the main resource for measurement-based quantum-information processing1,2. The latter requires the ex-ante generation of a multi-qubit entangled state described by a graph3-6. Small graph states such as Bell or linear cluster states have been produced with photons7-16, but the proposed quantum-computing and quantum-networking applications require fusion of such states into larger and more powerful states in a programmable fashion17-21. Here we achieve this goal by using an optical resonator22 containing two individually addressable atoms23,24. Ring25 and tree26 graph states with up to eight qubits, with the names reflecting the entanglement topology, are efficiently fused from the photonic states emitted by the individual atoms. The fusion process itself uses a cavity-assisted gate between the two atoms. Our technique is, in principle, scalable to even larger numbers of qubits and is the decisive step towards, for instance, a memory-less quantum repeater in a future quantum internet27-29.

2.
Nature ; 608(7924): 677-681, 2022 08.
Article in English | MEDLINE | ID: mdl-36002484

ABSTRACT

The central technological appeal of quantum science resides in exploiting quantum effects, such as entanglement, for a variety of applications, including computing, communication and sensing1. The overarching challenge in these fields is to address, control and protect systems of many qubits against decoherence2. Against this backdrop, optical photons, naturally robust and easy to manipulate, represent ideal qubit carriers. However, the most successful technique so far for creating photonic entanglement3 is inherently probabilistic and, therefore, subject to severe scalability limitations. Here we report the implementation of a deterministic protocol4-6 for the creation of photonic entanglement with a single memory atom in a cavity7. We interleave controlled single-photon emissions with tailored atomic qubit rotations to efficiently grow Greenberger-Horne-Zeilinger (GHZ) states8 of up to 14 photons and linear cluster states9 of up to 12 photons with a fidelity lower bounded by 76(6)% and 56(4)%, respectively. Thanks to a source-to-detection efficiency of 43.18(7)% per photon, we measure these large states about once every minute, which is orders of magnitude faster than in any previous experiment3,10-13. In the future, this rate could be increased even further, the scheme could be extended to two atoms in a cavity14,15 or several sources could be quantum mechanically coupled16, to generate higher-dimensional cluster states17. Overcoming the limitations encountered by probabilistic schemes for photonic entanglement generation, our results may offer a way towards scalable measurement-based quantum computation18,19 and communication20,21.

3.
Phys Rev Lett ; 127(17): 173602, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34739278

ABSTRACT

Rapid progress in cooling and trapping of molecules has enabled first experiments on high-resolution spectroscopy of trapped diatomic molecules, promising unprecedented precision. Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom. Here, this is achieved by combining a homogeneous-field microstructured electric trap, rotational transitions with minimal Stark broadening at a"magic" offset electric field, and optoelectrical Sisyphus cooling of molecules to the low millikelvin temperature regime. We thereby reduce Stark broadening on the J=5←4 (K=3) transition of formaldehyde at 364 GHz to well below 1 kHz, observe Doppler-limited linewidths down to 3.8 kHz, and determine the magic-field line position with an uncertainty below 100 Hz. Our approach opens a multitude of possibilities for investigating diverse polyatomic molecule species.

4.
Phys Rev Lett ; 126(25): 253603, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34241514

ABSTRACT

Nondestructive quantum measurements are central for quantum physics applications ranging from quantum sensing to quantum computing and quantum communication. Employing the toolbox of cavity quantum electrodynamics, we here concatenate two identical nondestructive photon detectors to repeatedly detect and track a single photon propagating through a 60 m long optical fiber. By demonstrating that the combined signal-to-noise ratio of the two detectors surpasses each single one by about 2 orders of magnitude, we experimentally verify a key practical benefit of cascaded nondemolition detectors compared to conventional absorbing devices.

5.
Phys Rev Lett ; 126(13): 130502, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33861090

ABSTRACT

Quantum teleportation enables the deterministic exchange of qubits via lossy channels. While it is commonly believed that unconditional teleportation requires a preshared entangled qubit pair, here we demonstrate a protocol that is in principle unconditional and requires only a single photon as an ex-ante prepared resource. The photon successively interacts, first, with the receiver and then with the sender qubit memory. Its detection, followed by classical communication, heralds a successful teleportation. We teleport six mutually unbiased qubit states with average fidelity F[over ¯]=(88.3±1.3)% at a rate of 6 Hz over 60 m.

6.
Nature ; 591(7851): 570-574, 2021 03.
Article in English | MEDLINE | ID: mdl-33762772

ABSTRACT

One of the biggest challenges in experimental quantum information is to sustain the fragile superposition state of a qubit1. Long lifetimes can be achieved for material qubit carriers as memories2, at least in principle, but not for propagating photons that are rapidly lost by absorption, diffraction or scattering3. The loss problem can be mitigated with a nondestructive photonic qubit detector that heralds the photon without destroying the encoded qubit. Such a detector is envisioned to facilitate protocols in which distributed tasks depend on the successful dissemination of photonic qubits4,5, improve loss-sensitive qubit measurements6,7 and enable certain quantum key distribution attacks8. Here we demonstrate such a detector based on a single atom in two crossed fibre-based optical resonators, one for qubit-insensitive atom-photon coupling and the other for atomic-state detection9. We achieve a nondestructive detection efficiency upon qubit survival of 79 ± 3 per cent and a photon survival probability of 31 ± 1 per cent, and we preserve the qubit information with a fidelity of 96.2 ± 0.3 per cent. To illustrate the potential of our detector, we show that it can, with the current parameters, improve the rate and fidelity of long-distance entanglement and quantum state distribution compared to previous methods, provide resource optimization via qubit amplification and enable detection-loophole-free Bell tests.

7.
Science ; 371(6529): 614-617, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33542133

ABSTRACT

The big challenge in quantum computing is to realize scalable multi-qubit systems with cross-talk-free addressability and efficient coupling of arbitrarily selected qubits. Quantum networks promise a solution by integrating smaller qubit modules to a larger computing cluster. Such a distributed architecture, however, requires the capability to execute quantum-logic gates between distant qubits. Here we experimentally realize such a gate over a distance of 60 meters. We employ an ancillary photon that we successively reflect from two remote qubit modules, followed by a heralding photon detection, which triggers a final qubit rotation. We use the gate for remote entanglement creation of all four Bell states. Our nonlocal quantum-logic gate could be extended both to multiple qubits and many modules for a tailor-made multi-qubit computing register.

8.
Phys Rev Lett ; 124(9): 093603, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32202889

ABSTRACT

We show an optical wave-mixing scheme that generates quantum light by means of a single three-level atom. The atom couples to an optical cavity and two laser fields that together drive a cycling current within the atom. Weak driving in combination with strong atom-cavity coupling induces transitions in a harmonic ladder of dark states, accompanied by single-photon emission via a quantum Zeno effect and suppression of atomic excitation via quantum interference. For strong driving, the system can generate coherent or Schrödinger cat-like fields with frequencies distinct from those of the applied lasers.

9.
Phys Rev Lett ; 122(13): 133603, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-31012633

ABSTRACT

Single photons with tailored temporal profiles are a vital resource for future quantum networks. Here we distill them out of custom-shaped laser pulses that reflect from a single atom strongly coupled to an optical resonator. A subsequent measurement on the atom is employed to herald a successful distillation. Out of vacuum-dominated light pulses, we create single photons with fidelity 66(1)%, two-and-more-photon suppression 95.5(6)%, and a Wigner function with negative value -0.125(6). Our scheme applied to state-of-the-art fiber resonators could boost the single-photon fidelity to up to 96%.

10.
Science ; 358(6363): 645-648, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29025993

ABSTRACT

Ultracold molecules represent a fascinating research frontier in physics and chemistry, but it has proven challenging to prepare dense samples at low velocities. Here, we present a solution to this goal by means of a nonconventional approach dubbed cryofuge. It uses centrifugal force to bring cryogenically cooled molecules to kinetic energies below 1 K × kB in the laboratory frame, where kB is the Boltzmann constant, with corresponding fluxes exceeding 1010 per second at velocities below 20 meters per second. By attaining densities higher than 109 per cubic centimeter and interaction times longer than 25 milliseconds in samples of fluoromethane as well as deuterated ammonia, we observed cold dipolar collisions between molecules and determined their collision cross sections.

11.
Phys Rev Lett ; 118(21): 210503, 2017 May 26.
Article in English | MEDLINE | ID: mdl-28598645

ABSTRACT

We demonstrate entanglement generation of two neutral atoms trapped inside an optical cavity. Entanglement is created from initially separable two-atom states through carving with weak photon pulses reflected from the cavity. A polarization rotation of the photons heralds the entanglement. We show the successful implementation of two different protocols and the generation of all four Bell states with a maximum fidelity of (90±2)%. The protocol works for any distance between cavity-coupled atoms, and no individual addressing is required. Our result constitutes an important step towards applications in quantum networks, e.g., for entanglement swapping in a quantum repeater.

12.
Rev Sci Instrum ; 88(3): 033101, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28372437

ABSTRACT

Optical frequency combs (OFCs) provide a convenient reference for the frequency stabilization of continuous-wave lasers. We demonstrate a frequency control method relying on tracking over a wide range and stabilizing the beat note between the laser and the OFC. The approach combines fast frequency ramps on a millisecond timescale in the entire mode-hop free tuning range of the laser and precise stabilization to single frequencies. We apply it to a commercially available optical parametric oscillator (OPO) and demonstrate tuning over more than 60 GHz with a ramping speed up to 3 GHz/ms. Frequency ramps spanning 15 GHz are performed in less than 10 ms, with the OPO instantly relocked to the OFC after the ramp at any desired frequency. The developed control hardware and software are able to stabilize the OPO to sub-MHz precision and to perform sequences of fast frequency ramps automatically.

13.
Phys Rev Lett ; 118(13): 133604, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28409981

ABSTRACT

Photon blockade is a dynamical quantum-nonlinear effect in driven systems with an anharmonic energy ladder. For a single atom strongly coupled to an optical cavity, we show that atom driving gives a decisively larger optical nonlinearity than cavity driving. This enhances single-photon blockade and allows for the implementation of two-photon blockade where the absorption of two photons suppresses the absorption of further photons. As a signature, we report on three-photon antibunching with simultaneous two-photon bunching observed in the light emitted from the cavity. Our experiment constitutes a significant step towards multiphoton quantum-nonlinear optics.

14.
Chemphyschem ; 17(22): 3631-3640, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27481120

ABSTRACT

A comprehensive characterisation of cold molecular beams from a cryogenic buffer-gas cell, providing insight into the physics of buffer-gas cooling, is presented. Cold molecular beams are extracted from a cryogenic cell by electrostatic guiding, which is also used to measure their velocity distribution. The rotational-state distribution of the molecules is probed by radio-frequency resonant depletion spectroscopy. With the help of complete trajectory simulations, yielding the guiding efficiency for all of the thermally populated states, it is possible to determine both the rotational and the translational temperature of the molecules at the output of the buffer-gas cell. This thermometry method is demonstrated for various regimes of buffer-gas cooling and beam formation as well as for molecular species of different sizes (CH3 F and CF3 CCH). Comparison of the rotational and translational temperatures provides evidence of faster rotational thermalisation for the CH3 F/He system in the limit of low He density. In addition, the relaxation rates for different rotational states appear to be different.

15.
Sci Adv ; 2(4): e1600036, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27386511

ABSTRACT

A deterministic photon-photon quantum logic gate is a long-standing goal. Building such a gate becomes possible if a light pulse containing only one photon imprints a phase shift of π onto another light field. We experimentally demonstrate the generation of such a π phase shift with a single-photon pulse. A first light pulse containing less than one photon on average is stored in an atomic gas. Rydberg blockade combined with electromagnetically induced transparency creates a phase shift for a second light pulse, which propagates through the medium. We measure the π phase shift of the second pulse when we postselect the data upon the detection of a retrieved photon from the first pulse. This demonstrates a crucial step toward a photon-photon gate and offers a variety of applications in the field of quantum information processing.


Subject(s)
Optics and Photonics , Photons , Light , Quantum Theory
16.
Nature ; 536(7615): 193-6, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27383791

ABSTRACT

That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other's phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon's polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift''. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations. The demonstrated feasibility of deterministic protocols for the optical processing of quantum information could lead to new applications in which photons are essential, especially long-distance quantum communication and scalable quantum computing.

17.
Phys Rev Lett ; 116(6): 063005, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26918988

ABSTRACT

We demonstrate direct cooling of gaseous formaldehyde (H2CO) to the microkelvin regime. Our approach, optoelectrical Sisyphus cooling, provides a simple dissipative cooling method applicable to electrically trapped dipolar molecules. By reducing the temperature by 3 orders of magnitude and increasing the phase-space density by a factor of ∼10(4), we generate an ensemble of 3×10(5) molecules with a temperature of about 420 µK, populating a single rotational state with more than 80% purity.

18.
Phys Rev Lett ; 115(23): 233001, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26684114

ABSTRACT

Controlling the internal degrees of freedom is a key challenge for applications of cold and ultracold molecules. Here, we demonstrate rotational-state cooling of trapped methyl fluoride molecules (CH_{3}F) by optically pumping the population of 16 M sublevels in the rotational states J=3, 4, 5 and 6 into a single level. By combining rotational-state cooling with motional cooling, we increase the relative number of molecules in the state J=4, K=3, M=4 from a few percent to over 70%, thereby generating a translationally cold (≈30 mK) and nearly pure state ensemble of about 10^{6} molecules. Our scheme is extendable to larger sets of initial states, other final states, and a variety of molecule species, thus paving the way for internal-state control of ever-larger molecules.

19.
Phys Rev Lett ; 114(22): 220501, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-26196608

ABSTRACT

Combining techniques of cavity quantum electrodynamics, quantum measurement, and quantum feedback, we have realized the heralded transfer of a polarization qubit from a photon onto a single atom with 39% efficiency and 86% fidelity. The reverse process, namely, qubit transfer from the atom onto a given photon, is demonstrated with 88% fidelity and an estimated efficiency of up to 69%. In contrast to previous work based on two-photon interference, our scheme is robust against photon arrival-time jitter and achieves much higher efficiencies. Thus, it constitutes a key step toward the implementation of a long-distance quantum network.

20.
Science ; 345(6199): 871, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25146268
SELECTION OF CITATIONS
SEARCH DETAIL
...