Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
World J Microbiol Biotechnol ; 39(6): 144, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37004675

ABSTRACT

The commercialization of fruits in markets generates a large amount of waste because they are perishable and have a short shelf life, so, they are discarded. This study aimed to provide a noble end to discarded fruits that have fermentable sugars. Banana, apple, mango and papaya residues were collected from supermarkets and underwent an enzymatic hydrolysis process. The ability of four pectinases, two amylases, one xylanase and one cellulase to release reducing sugars from fruit biomass before fermentation with two yeast strains (S. cerevisiae CAT-1 and S. cerevisiae Angel) for bioethanol production was investigated, obtaining a total of RS (Reducing sugar) of 268.08 mg/mL in banana residues. A fermentation with yeast S. cerevisiae CAT-1 resulted in 98% consumption of RS and the production of a total of 28.02 g/L of ethanol. Furthermore, fermentation with the yeast S. cerevisiae Angel, resulted in 97% RS consumption and 31.87 g/L ethanol production, which was the best result obtained throughout all the tests of hydrolysis, highlighting the banana residue as a promising biomass for the production of bioethanol.


Subject(s)
Fruit , Saccharomyces cerevisiae , Hydrolysis , Biomass , Fermentation , Sugars , Ethanol , Biofuels
2.
Biodegradation ; 32(4): 389-401, 2021 08.
Article in English | MEDLINE | ID: mdl-33864197

ABSTRACT

The contamination of soils by oily compounds has several environmental impacts, which can be reversed through bioremediation, using biosurfactants as auxiliaries in the biodegradation process. In this study, we aimed to perform ex situ bioremediation of biodiesel-contaminated soil using biosurfactants produced by Bacillus methylotrophicus. A crude biosurfactant was produced in a whey-based culture medium supplemented with nutrients and was later added to biodiesel-contaminated clayey soil. The produced lipopeptide biosurfactant could reduce the surface tension of the fermentation broth to 30.2 mN/m. An increase in the microbial population was observed in the contaminated soil; this finding can be corroborated by the finding of increased CO2 release over days of bioremediation. Compared with natural attenuation, the addition of a lower concentration of the biosurfactant (0.5% w/w in relation to the mass of diesel oil) to the soil increased biodiesel removal by about 16% after 90 days. The added biosurfactant did not affect the retention of the contaminant in the soil, which is an important factor to be considered when applying in situ bioremediation technologies.


Subject(s)
Petroleum , Soil Pollutants , Bacillus , Biodegradation, Environmental , Biofuels , Clay , Soil , Soil Microbiology , Soil Pollutants/analysis , Surface-Active Agents
3.
Sci Total Environ ; 772: 144918, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-33578141

ABSTRACT

Emerging contaminants (EC) have been detected in effluents and drinking water in concentrations that can harm to a variety of organisms. Therefore, several technologies are developed to treat these compounds, either for their complete removal or degradation in less toxic by-products. Some technologies applied to the treatment of EC, such as adsorption, advanced oxidative processes, membrane separation processes, and bioremediation through microalgal metabolism, were identified by thematic maps. In this review, we used a bibliometric software from >1000 articles. These manuscripts, in general, present removals from 0% to 100% for different ECs. This efficiency varies between treatment technologies and the contaminants' physical-chemical properties and their concentration and operational parameters. This review explored the bioremediation of EC through microalgae with greater emphasis. The main mechanisms of action of microalgae in the bioremediation of ECs are biodegradation bioadsorption, and bioaccumulation. Also, physicochemical properties and removal efficiencies of >50 emerging contaminants are presented. Although there are challenges related to the generation of more toxic by-products and economic and environmental viability, these can be minimized with advances in the development of treatment technologies and even through the integration of different techniques to make the treatment of contaminants emerging from environmental media more sustainable.


Subject(s)
Microalgae , Biodegradation, Environmental
4.
Bioresour Technol ; 322: 124525, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33333395

ABSTRACT

This study aimed to produce fungal biomass from agro-industrial by-products for later use as a bioflocculant in the Spirulina harvesting. The production of fungal biomass from Aspergillus niger was carried out in submerged fermentation, using media composed of wheat bran and/or potato peel. Fungal biomass was used as a bioflocculant in Spirulina cultures carried out in closed 5 L reactors and 180 L open raceway pond operated in batch and semi-continuous processes, respectively. Fungal biomass was able to harvest Spirulina platensis cultures with efficiencies between 90% and 100% after 2 h of sedimentation in some experimental conditions. Efficiencies higher than 80% were achieved in most tests without pH adjustment during bioflocculations, which shows that the developed method is a promising alternative to traditional Spirulina harvesting techniques. Above all, the development of an eco-friendly fungal-assisted bioflocculation process increases the sustainability of Spirulina biomass for different applications, especially biofuels.


Subject(s)
Spirulina , Biofuels , Biomass , Ponds
5.
Bioresour Technol ; 311: 123526, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32446238

ABSTRACT

This study aimed to assess the harvesting of Spirulina platensis using coagulants and electrocoagulation-flotation (ECF) and to evaluate its influence on enzymatic hydrolysis. Using nine chemical coagulants, we obtained a biomass harvesting efficiency of up to 99.5%. Using ECF, the harvesting efficiency at the aluminum and carbon electrode was 98%-99% and 33.8%-86.9%, respectively. Hydrolysis efficiency (HE) with amylases varied from 17% to 42%, and the degree of hydrolysis (DH) with proteases varied from 1.26% to 4.07%, compared with an HE of 31% and a DH of 3.57% in the centrifuged biomass. Compared to an HE of 61.75% for the centrifuged biomass, and HE of 99% and 85.46% was obtained for the biomass harvested using the aluminum and carbon electrodes. The HEs with the electrodes were better than those with the alternative methods and centrifugation; hence, with some optimization, the biomass harvested could be used for enzymatic hydrolysis.


Subject(s)
Microalgae , Spirulina , Biomass , Electrocoagulation , Hydrolysis
6.
Bioresour Technol ; 301: 122698, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31954965

ABSTRACT

The aim was to produce bioethanol by the simultaneous saccharification and fermentation (SSF) of Spirulina sp. LEB 18 biomass and corn starch, increasing the process scale and obtaining biopeptides from bioethanol residue. Different temperatures of SSF and biomass/starch concentrations were tested, and the best conditions were chosen to scale-up the bioethanol production. The biopeptides were obtained enzymatically with a protease. The antioxidant capacity, molecular structure, thermal stability and mass loss of the biopeptides were evaluated. A total of 73 g L-1 bioethanol was obtained during scale-up, and the residue presented a high protein content with a degree of hydrolysis of 86%. The biopeptides showed 32% ABTS radical inhibition with high thermal stability. This study showed the possibility of the biorefinery concept being able to produce bioethanol by Spirulina, and the biopeptides from the bioethanol residue presented high antioxidant capacity and can be used in many areas of the food industry.


Subject(s)
Spirulina , Antioxidants , Biofuels , Biomass , Ethanol , Fermentation , Hydrolysis , Starch , Zea mays
7.
Bioresour Technol ; 288: 121588, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31176943

ABSTRACT

This study aimed to produce bioethanol using Spirulina platensis biomass and the use of saccharification and fermentation wastes of bioethanol production to produce biomethane. The potential for energy generation in each technological route was quantified. Both, the enzymatic hydrolysis of the microalgae polysaccharides and the fermentation process, presented efficiencies above 80%. The fermentation of the hydrolyzate into ethanol was possible without the addition of synthetic nutrients to the must. The direct conversion of Spirulina biomass to biomethane had an energy potential of 16,770 kJ.kg-1, while bioethanol production from the hydrolysed biomass presented 4,664 kJ.kg-1. However, the sum of the energy potential obtained by producing bioethanol followed by the production of biomethane with the saccharification and fermentation residues was 13,945 kJ.kg-1. Despite this, the same raw material was able to produce both biofuels, demonstrating that Spirulina microalgae is a promising alternative to contribute in the field of renewable energies.


Subject(s)
Microalgae , Spirulina , Biofuels , Biomass , Fermentation , Hydrolysis
8.
Science ; 363(6427)2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30733388

ABSTRACT

Stearns and van der Veen (Reports, 20 July 2018, p. 273) conclude that fast glacier sliding is independent of basal drag (friction), even where drag balances most of the driving stress. This conclusion raises fundamental physical issues, the most striking of which is that sliding velocity would be independent of stresses imparted through the ice column, including gravitational driving stress.

9.
Nat Commun ; 9(1): 3242, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30104640

ABSTRACT

Discharge from sliding outlet glaciers controls uncertainty in projections for future sea level. Remarkably, over 90% of glacial area is subject to gravitational driving stresses below 150 kPa (median ∼70 kPa). Longstanding explanations that appeal to the shear-thinning rheology of ice tend to overpredict driving stresses and are restricted to areas where ice sheets only deform (roughly 50%). Over the more dynamic portions that slide, driving stresses must be balanced by thermo-mechanical interactions that control basal strength. Here we show that median bed strength is comparable to a threshold effective stress set by ice-liquid surface energy and till pore size. Above this threshold, ice infiltrates sediment to produce basal layers of debris-rich ice, even where net melting takes place. We demonstrate that the narrow range of inferred bed strengths can be explained by the mechanical resistance to sliding where roughness is enhanced by heterogeneous freeze-on.

10.
Bioresour Technol ; 263: 163-171, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29738979

ABSTRACT

We aimed to use physical methods of microalgal biomass rupture to study saccharification strategies using free and immobilized amylolytic enzymes. The biomass of Spirulina platensis, which consists of 50-60% carbohydrates, was exposed to physical cell rupture treatments, with better results obtained using freeze/thaw cycles following by gelatinization. In saccharification tests, it was possible to hydrolyze Spirulina biomass with hydrolysis efficiencies above 99% and 83%, respectively, using 1% (v/v) of free enzymes or 1% (m/v) of amylolytic enzymes immobilized together. The use of free and immobilized enzymes yielded high levels of conversion of polysaccharides to simple sugars in Spirulina biomass, showing that these processes are promising for the advancement of bioethanol production using microalgal biomass.


Subject(s)
Enzymes, Immobilized , Spirulina , Biomass , Hydrolysis , Microalgae
11.
Science ; 354(6315): 1027-1031, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27885027

ABSTRACT

The 2004 Sumatra-Andaman and 2011 Tohoku-Oki earthquakes highlighted gaps in our understanding of mega-earthquake rupture processes and the factors controlling their global distribution: A fast convergence rate and young buoyant lithosphere are not required to produce mega-earthquakes. We calculated the curvature along the major subduction zones of the world, showing that mega-earthquakes preferentially rupture flat (low-curvature) interfaces. A simplified analytic model demonstrates that heterogeneity in shear strength increases with curvature. Shear strength on flat megathrusts is more homogeneous, and hence more likely to be exceeded simultaneously over large areas, than on highly curved faults.

12.
Proc Natl Acad Sci U S A ; 113(37): 10281-6, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27573836

ABSTRACT

Catastrophic landslides cause billions of dollars in damages and claim thousands of lives annually, whereas slow-moving landslides with negligible inertia dominate sediment transport on many weathered hillslopes. Surprisingly, both failure modes are displayed by nearby landslides (and individual landslides in different years) subjected to almost identical environmental conditions. Such observations have motivated the search for mechanisms that can cause slow-moving landslides to transition via runaway acceleration to catastrophic failure. A similarly diverse range of sliding behavior, including earthquakes and slow-slip events, occurs along tectonic faults. Our understanding of these phenomena has benefitted from mechanical treatments that rely upon key ingredients that are notably absent from previous landslide descriptions. Here, we describe landslide motion using a rate- and state-dependent frictional model that incorporates a nonlocal stress balance to account for the elastic response to gradients in slip. Our idealized, one-dimensional model reproduces both the displacement patterns observed in slow-moving landslides and the acceleration toward failure exhibited by catastrophic events. Catastrophic failure occurs only when the slip surface is characterized by rate-weakening friction and its lateral dimensions exceed a critical nucleation length [Formula: see text] that is shorter for higher effective stresses. However, landslides that are extensive enough to fall within this regime can nevertheless slide slowly for months or years before catastrophic failure. Our results suggest that the diversity of slip behavior observed during landslides can be described with a single model adapted from standard fault mechanics treatments.

13.
Sci Adv ; 1(10): e1500715, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26702434

ABSTRACT

Understanding climatic influences on the rates and mechanisms of landscape erosion is an unresolved problem in Earth science that is important for quantifying soil formation rates, sediment and solute fluxes to oceans, and atmospheric CO2 regulation by silicate weathering. Glaciated landscapes record the erosional legacy of glacial intervals through moraine deposits and U-shaped valleys, whereas more widespread unglaciated hillslopes and rivers lack obvious climate signatures, hampering mechanistic theory for how climate sets fluxes and form. Today, periglacial processes in high-elevation settings promote vigorous bedrock-to-regolith conversion and regolith transport, but the extent to which frost processes shaped vast swaths of low- to moderate-elevation terrain during past climate regimes is not well established. By combining a mechanistic frost weathering model with a regional Last Glacial Maximum (LGM) climate reconstruction derived from a paleo-Earth System Model, paleovegetation data, and a paleoerosion archive, we propose that frost-driven sediment production was pervasive during the LGM in our unglaciated Pacific Northwest study site, coincident with a 2.5 times increase in erosion relative to modern rates. Our findings provide a novel framework to quantify how climate modulates sediment production over glacial-interglacial cycles in mid-latitude unglaciated terrain.

14.
Article in English | MEDLINE | ID: mdl-25019705

ABSTRACT

Premelted water that is adsorbed to particle surfaces and confined to capillary regions remains in the liquid state well below the bulk melting temperature and can supply the segregated growth of ice lenses. Using macroscopic measurements of ice-lens initiation position in step-freezing experiments, we infer how the nanometer-scale thicknesses of premelted films depend on temperature depression below bulk melting. The interfacial interactions between ice, liquid, and soda-lime glass particles exhibit a power-law behavior that suggests premelting in our system is dominated by short-range electrostatic forces. Using our inferred film thicknesses as inputs to a simple force-balance model with no adjustable parameters, we obtain good quantitative agreement between numerical predictions and observed ice-lens thickness. Macroscopic observations of lensing behavior have the potential as probes of premelting behavior in other systems.


Subject(s)
Freezing , Ice , Glass , Models, Theoretical , Static Electricity
15.
J Phys Chem B ; 118(47): 13420-6, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-24984185

ABSTRACT

Ice lenses are formed during soil freezing by the migration and solidification of premelted water that is adsorbed to ice-particle interfaces and confined to capillary regions. We develop a model of ice lens growth that clearly illustrates how the freezing rate dependence on particle size and soil microstructure changes in response to changes in the relative importance of permeable flow and thin-film flow in governing the water supply. The growth of an ice lens in fine-grained porous media is primarily constrained by low permeability in the unfrozen region. In contrast, the constraints offered by the film flow decrease the lens growth rate adjacent to larger particles. The trade-off between resistance to permeable flow and film flow causes the growth rate for ice lenses to be maximized for particles of intermediate size. Moreover, because film flow along particle surfaces adjacent to a growing lens is not strongly affected by the microstructure of the pore space, our analysis predicts that lensing in coarse-grained porous media is insensitive to the pore microstructure and porosity, but the permeable flow that governs lens formation in fine-grained porous media causes their growth to be much more affected by these details.

SELECTION OF CITATIONS
SEARCH DETAIL
...