Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 11(1): e0330822, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36546869

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen with multiple strategies to interact with other microbes and host cells, gaining fitness in complicated infection sites. The contact-dependent type VI secretion system (T6SS) is one critical secretion apparatus involved in both interbacterial competition and pathogenesis. To date, only limited numbers of T6SS-effectors have been clearly characterized in P. aeruginosa laboratory strains, and the importance of T6SS diversity in the evolution of clinical P. aeruginosa remains unclear. Recently, we characterized a P. aeruginosa clinical strain LYSZa7 from a COVID-19 patient, which adopted complex genetic adaptations toward chronic infections. Bioinformatic analysis has revealed a putative type VI secretion system (T6SS) dependent lipase effector in LYSZa7, which is a homologue of TseL in Vibrio cholerae and is widely distributed in pathogens. We experimentally validated that this TseL homologue belongs to the Tle2, a subfamily of T6SS-lipase effectors; thereby, we name this effector TseL (TseLPA in this work). Further, we showed the lipase-dependent bacterial toxicity of TseLPA, which primarily targets bacterial periplasm. The toxicity of TseLPA can be neutralized by two immunity proteins, TsiP1 and TsiP2, which are encoded upstream of tseL. In addition, we proved this TseLPA contributes to bacterial pathogenesis by promoting bacterial internalization into host cells. Our study suggests that clinical bacterial strains employ a diversified group of T6SS effectors for interbacterial competition and might contribute to emerging of new epidemic clonal lineages. IMPORTANCE Pseudomonas aeruginosa is one predominant pathogen that causes hospital-acquired infections and is one of the commonest coinfecting bacteria in immunocompromised patients and chronic wounds. This bacterium harbors a diverse accessory genome with a high frequency of gene recombination, rendering its population highly heterogeneous. Numerous Pa lineages coexist in the biofilm, where successful epidemic clonal lineage or strain-specific type commonly acquires genes to increase its fitness over the other organisms. Current studies of Pa genomic diversity commonly focused on antibiotic resistant genes and novel phages, overlooking the contribution of type VI secretion system (T6SS). We characterized a Pa clinical strain LYSZa7 from a COVID-19 patient, which adopted complex genetic adaptations toward chronic infections. We report, in this study, a novel T6SS-lipase effector that is broadly distributed in Pa clinical isolates and other predominant pathogens. The study suggests that hospital transmission may raise the emergence of new epidemic clonal lineages with specified T6SS effectors.


Subject(s)
COVID-19 , Pseudomonas aeruginosa , Type VI Secretion Systems , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , COVID-19/complications , COVID-19/microbiology , Persistent Infection , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism
2.
Biochem Biophys Res Commun ; 609: 111-118, 2022 06 18.
Article in English | MEDLINE | ID: mdl-35429678

ABSTRACT

Although GATA5 is vital in maintaining the function of endothelial cells, the relationship between GATA5 and angiogenesis, however, remains unclear. Our study aims to determine how endothelial GATA5 mediates angiogenesis. Using the ischemic hindlimb of mice with GATA5 overexpression in the endothelia (EC-Ad mice), we showed that GATA5 overexpression could improve blood perfusion and increase capillary density. Furthermore, we showed that overexpression of GATA5 can increase the protein and mRNA levels of angiopoietin-2 (Angpt2) and fetal liver kinase 1 (Flk1) in the endothelia of EC-Ad mice, while GATA5 knockdown can inhibit the VEGF-165-induced proliferation, tube formation, and migration of human umbilical vein endothelial cells (HUVECs). In addition, we observed a decrease in the Angpt2 and Flk1, and the matrix metalloproteinase (MMP) family proteins: MMP2 and MMP9 while GATA5 was decreased. Meanwhile, our study also demonstrated that the expression of cathepsin S (Cat S) decreases when GATA5 is downregulated. Immunoprecipitation assay indicated that GATA5 could bind to Cat S directly. Furthermore, GATA5 or Cat S overexpression can promote tube formation and migration of HUVECs, restore the Angpt2 and Flk1 expression levels in the GATA5 knockdown HUVECs, and upregulate MMP2 and MMP9 protein levels. In summary, our study demonstrated that endothelial GATA5 could mediate angiogenesis by inducing the expression of Cat S, which mediates the Angpt2/Flk1 and MMP2/9 signaling pathways.


Subject(s)
Angiopoietin-2 , Vascular Endothelial Growth Factor Receptor-2 , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Animals , Cathepsins , GATA5 Transcription Factor/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic , Signal Transduction , Vascular Endothelial Growth Factor Receptor-2/metabolism
3.
J Cell Physiol ; 234(9): 14507-14518, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30585623

ABSTRACT

α1 Nicotinic acetylcholine receptor (α1nAChR) is an important nicotine receptor that is widely distributed in vascular smooth muscle cells, macrophages, and endothelial cells. However, the role of α1nAChR in nicotine-mediated atherosclerosis remains unclear. The administration of nicotine for 12 weeks increased the area of the atherosclerotic lesion, the number of macrophages infiltrating the plaques, and the circulating levels of inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-α, in apolipoprotein E-deficient (ApoE-/- ) mice fed a high-fat diet. Nicotine also increased α1nAChR, calpain-1, matrix metalloproteinase-2 (MMP-2), and MMP-9 expression in the aortic tissue. Silencing of α1nAChR with an adenoassociated virus decreased the atherosclerotic size, lesion macrophage content, and circulating levels of inflammatory cytokines and suppressed α1nAChR, calpain-1, MMP-2, and MMP-9 expression in the nicotine group. In vitro, nicotine-induced α1nAChR, calpain-1, MMP-2, and MMP-9 expression in mouse vascular smooth muscle cells (MOVAS) and macrophages (RAW264.7), and enhanced the migration and proliferation of these cells. The silencing of α1nAChR inhibited these effects of nicotine MOVAS and RAW264.7 cells. Thus, we concluded that nicotine promoted the development of atherosclerosis partially by inducing the migration and proliferation of vascular smooth muscle cells and macrophages and inducing an inflammatory reaction. The effect of nicotine on atherogenesis may be mediated by α1nAChR-induced activation of the calpain-1/MMP-2/MMP-9 signaling pathway.

4.
Mediators Inflamm ; 2017: 2401027, 2017.
Article in English | MEDLINE | ID: mdl-29348704

ABSTRACT

Vagus nerve stimulation through alpha7 nicotine acetylcholine receptors (α7-nAChR) signaling had been demonstrated attenuation of inflammation. This study aimed to determine whether PNU-282987, a selective α7-nAChR agonist, affected activities of matrix metalloproteinase (MMP) and inflammatory cytokines in nicotine-treatment RAW264.7 and MOVAS cells and to assess the underlying molecular mechanisms. RAW264.7 and MOVAS cells were treated with nicotine at different concentrations (0, 1, 10, and 100 ng/ml) for 0-120 min. Nicotine markedly stimulated the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) and c-Jun in RAW264.7 cells. Pretreatment with U0126 significantly suppressed phosphorylation of ERK1/2 and further attenuated nicotine-induced activation of c-Jun and upregulation of MMP-2, MMP-9, monocyte chemotactic protein- (MCP-) 1, and regulated upon activation normal T cell expressed and secreted (RANTES). Similarly, nicotine treatment also increased phosphorylation of c-Jun and expressions of MMP-2, MMP-9, MCP-1, and RANTES in MOVAS cells. When cells were pretreated with PNU-282987, nicotine-induced activations of ERK1/2 and c-Jun in RAW264.7 cells and c-Jun in MOVAS cells were effectively inhibited. Furthermore, nicotine-induced secretions of MMP-2, MMP-9, MCP-1, and RANTES were remarkably downregulated. Treatment with α7-nAChR agonist inhibits nicotine-induced upregulation of MMP and inflammatory cytokines through modulating ERK1/2/AP-1 signaling in RAW264.7 cells and AP-1 in MOVAS cells, providing a new therapeutic for abdominal aortic aneurysm.


Subject(s)
Chemokine CCL2/genetics , Chemokine CCL5/genetics , Extracellular Signal-Regulated MAP Kinases/physiology , Matrix Metalloproteinases/genetics , Nicotine/pharmacology , Signal Transduction/physiology , Transcription Factor AP-1/physiology , alpha7 Nicotinic Acetylcholine Receptor/physiology , Animals , Benzamides/pharmacology , Bridged Bicyclo Compounds/pharmacology , Butadienes/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/physiology , Mice , Nitriles/pharmacology , Phosphorylation , RAW 264.7 Cells , Up-Regulation/physiology , alpha7 Nicotinic Acetylcholine Receptor/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...