Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Inflammation ; 44(1): 397-406, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32951103

ABSTRACT

Liraglutide, one of the glucagon-like peptide 1 receptor (GLP-1R) agonists, has been demonstrated to protect brain damage produced by ischemic stroke. However, it remains unknown whether liraglutide attenuates early brain injury after subarachnoid hemorrhage. The present study was performed to explore the effect of liraglutide on early brain injury after subarachnoid hemorrhage in rats, and further investigate the potential mechanisms. Sprague-Dawley rats underwent subarachnoid hemorrhage (SAH) by endovascular perforation, then received subcutaneous injection with liraglutide (50 or 100 µg/kg) or vehicle after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, and Evans Blue extravasation were measured 24 h after SAH. Immunofluorescent staining was performed to detect the extent of microglial activation in rat brain 24 h after SAH. TUNEL staining was performed to evaluate neuronal apoptosis in rat brain of SAH. Expression of GLP-1R, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), Bcl-2, Bax, and cleaved caspase-3 in rat brain were determined by western blot. Expression of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in rat brain was assessed by ELISA. Neurological dysfunction, brain water content, Evans Blue extravasation, microglial activation, and neuronal apoptosis were significantly reduced by GLP-1R agonist liraglutide. Expression of GLP-1R in rat brain was decreased after SAH, which is significantly elevated by liraglutide. Expression of inflammatory mediates like COX-2, iNOS, TNF-α, and IL-1ß was increased after SAH, which were significantly inhibited by liraglutide. Furthermore, SAH caused the elevated expression of pro-apoptotic factors Bax and cleaved caspase-3 in rat brain, both of which were inhibited by liraglutide. In addition, liraglutide reversed the expression of anti-apoptotic protein Bcl-2. Our results demonstrated that liraglutide reduces early brain injury and attenuates inflammatory reaction and neuronal apoptosis in rats of SAH. Liraglutide provides neuroprotection against SAH, which might be associated with the inhibition of inflammation and apoptosis.


Subject(s)
Apoptosis/drug effects , Brain Injuries/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Liraglutide/therapeutic use , Neurons/drug effects , Subarachnoid Hemorrhage/drug therapy , Animals , Apoptosis/physiology , Brain Injuries/metabolism , Brain Injuries/pathology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Liraglutide/pharmacology , Male , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...