Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 123(4): 048003, 2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31491281

ABSTRACT

A numerical scheme using the combined finite-discrete element method is employed to study a model of an earthquake system comprising a granular layer embedded in a formation. When the formation is driven so as to shear the granular layer, a system of stress chains emerges. The stress chains endow the layer with resistance to shear and on failure launch broadcasts into the formation. These broadcasts, received as acoustic emission, provide a remote monitor of the state of the granular layer of the earthquake system.

2.
Nano Lett ; 16(12): 7779-7785, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27960480

ABSTRACT

We demonstrate single-photon emission from self-assembled m-plane InGaN quantum dots (QDs) embedded on the side-walls of GaN nanowires. A combination of electron microscopy, cathodoluminescence, time-resolved microphotoluminescence (µPL), and photon autocorrelation experiments give a thorough evaluation of the QD structural and optical properties. The QD exhibits antibunched emission up to 100 K, with a measured autocorrelation function of g(2)(0) = 0.28(0.03) at 5 K. Studies on a statistically significant number of QDs show that these m-plane QDs exhibit very fast radiative lifetimes (260 ± 55 ps) suggesting smaller internal fields than any of the previously reported c-plane and a-plane QDs. Moreover, the observed single photons are almost completely linearly polarized aligned perpendicular to the crystallographic c-axis with a degree of linear polarization of 0.84 ± 0.12. Such InGaN QDs incorporated in a nanowire system meet many of the requirements for implementation into quantum information systems and could potentially open the door to wholly new device concepts.

3.
Article in English | MEDLINE | ID: mdl-22254651

ABSTRACT

Heterogeneity in the electrical action potential (AP) properties can provide a substrate for atrial arrhythmias, especially at rapid pacing rates. In order to quantify such substrates, we develop a family of detailed AP models for canine atrial cells. An existing model for the canine right atrial (RA) myocyte was modified based on electrophysiological data from dog to create new models for the canine left atrium (LA), the interatrial Bachmann's bundle (BB), and the pulmonary vein (PV). The heterogeneous AP models were incorporated into a tissue strand model to simulate the AP propagation, and used to quantify conditions for conduction abnormalities (primarily, conduction block at rapid pacing rated) in the canine atria.


Subject(s)
Action Potentials , Atrial Fibrillation/physiopathology , Heart Atria/physiopathology , Heart Conduction System/physiopathology , Models, Cardiovascular , Pulmonary Veins/physiopathology , Animals , Computer Simulation , Dogs
SELECTION OF CITATIONS
SEARCH DETAIL
...