Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(10): e0141513, 2015.
Article in English | MEDLINE | ID: mdl-26506095

ABSTRACT

BACKGROUND AND PURPOSE: Thalamostriate vein (TSV) is an important tributary of the internal cerebral vein, which mainly drains the basal ganglia and deep medulla. The purpose of this study was to explore the anatomic variation and quality of TSV and its smaller tributaries using susceptibility-weighted imaging (SWI). METHODS: We acquired SWI images in 40 volunteers on a 3.0T MR system using an 8-channel high-resolution phased array coil. The frequencies of the TSV and its tributaries were evaluated. We classified TSV into types I (forming a venous angle) and II (forming a false venous angle). We classified anterior caudate vein (ACV)into types 1 (1 trunk) and 2 (2 trunks) as well as into types A (joiningTSV), B (joining anterior septal vein), and C (joining the angle of both veins). RESULTS: The TSV drains the areas of caudate nucleus, internal capsule,lentiform nucleus, external capsule, claustrum, extreme capsule and the white matter of the frontoparietal lobes,except thalamus. The frequencies of the TSV, ACV and transverse caudate vein (ACV) were 92.5%, 87.5% and 63.8%, respectively. We found TSV types I and II in 79.7%, and 20.3% with significantly different constitution ratios (P< 0.05). The most common types of ACV were type 1 (90.0%) and type A (64.3%). CONCLUSION: The complex three-dimensional (3D) venous architecture of TSV and its small tributaries manifests great variation, with significant and practical implications for neurosurgery.


Subject(s)
Anatomic Variation , Cerebral Veins/anatomy & histology , Diagnostic Imaging , Magnetic Resonance Imaging , Adult , Caudate Nucleus/anatomy & histology , Caudate Nucleus/diagnostic imaging , Cerebral Cortex/blood supply , Cerebral Veins/diagnostic imaging , Female , Humans , Jugular Veins/anatomy & histology , Jugular Veins/diagnostic imaging , Male , Radiography , Thalamus/blood supply
2.
Neuroradiology ; 57(2): 163-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25326168

ABSTRACT

INTRODUCTION: The venous network of the brainstem is complex and significant. Susceptibility-weighted imaging (SWI) is a practical technique which is sensitive to veins, especially tiny veins. Our purpose of this study was to evaluate the visualization of the venous network of brainstem by using SWI at 3.0 T. METHODS: The occurrence rate of each superficial veins of brainstem was evaluated by using SWI on a 3 T MR imaging system in 60 volunteers. The diameter of the lateral mesencephalic vein and peduncular vein were measured by SWI using the reconstructed mIP images in the sagittal view. And the outflow of the veins of brainstem were studied and described according to the reconstructed images. RESULTS: The median anterior pontomesencephalic vein, median anterior medullary vein, peduncular vein, right vein of the pontomesencephalic sulcus, and right lateral anterior pontomesencephalic vein were detected in all the subjects (100%). The outer diameter of peduncular vein was 1.38 ± 0.26 mm (range 0.8-1.8 mm). The lateral mesencephalic vein was found in 75% of the subjects and the mean outer diameter was 0.81 ± 0.2 mm (range 0.5-1.2 mm). The inner veins of mesencephalon were found by using SWI. CONCLUSION: The venous networks around the brain stem can be visualized by SWI clearly. This result can not only provide data for anatomical study, but also may be available for the surgical planning in the infratentorial region.


Subject(s)
Brain Stem/anatomy & histology , Brain Stem/blood supply , Cerebral Veins/anatomy & histology , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Angiography/methods , Adult , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...