Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891858

ABSTRACT

Plant glutamate receptor-like channels (GLRs) are homologs of animal ionotropic glutamate receptors. GLRs are critical in various plant biological functions, yet their genomic features and functions in disease resistance remain largely unknown in many crop species. Here, we report the results on a thorough genome-wide study of the GLR family in oilseed rape (Brassica napus) and their role in resistance to the fungal pathogen Sclerotinia sclerotiorum. A total of 61 GLRs were identified in oilseed rape. They comprised three groups, as in Arabidopsis thaliana. Detailed computational analyses, including prediction of domain and motifs, cellular localization, cis-acting elements, PTM sites, and amino acid ligands and their binding pockets in BnGLR proteins, unveiled a set of group-specific characteristics of the BnGLR family, which included chromosomal distribution, motif composition, intron number and size, and methylation sites. Functional dissection employing virus-induced gene silencing of BnGLRs in oilseed rape and Arabidopsis mutants of BnGLR homologs demonstrated that BnGLR35/AtGLR2.5 positively, while BnGLR12/AtGLR1.2 and BnGLR53/AtGLR3.2 negatively, regulated plant resistance to S. sclerotiorum, indicating that GLR genes were differentially involved in this resistance. Our findings reveal the complex involvement of GLRs in B. napus resistance to S. sclerotiorum and provide clues for further functional characterization of BnGLRs.


Subject(s)
Ascomycota , Brassica napus , Disease Resistance , Plant Diseases , Plant Proteins , Receptors, Glutamate , Brassica napus/genetics , Brassica napus/microbiology , Ascomycota/pathogenicity , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/microbiology , Genome-Wide Association Study , Multigene Family , Genome, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...