Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 859(Pt 2): 160342, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36417946

ABSTRACT

Soil bulk density (BD) is a parameter dependent on soil texture, compositions of soil minerals and organic matter and the extent of soil compaction. Seasonal freeze/thaw in arid areas with shallow groundwater tables (AASGT) may significantly change BD and hence soil hydrothermal properties and water holding capacity. Therefore, quantifying soil bulk density changes (BDC) under freeze/thaw conditions can improve estimates of soil water-salt dynamics in AASGT. In this study, we conducted field experiments to investigate the soil water-salt dynamics under freeze/thaw conditions from three typical land-use types (i.e., farmland, woodland, and natural land) in the upper Yellow River basin, China. We proposed a method to estimate BDC, which can better describe the soil water-salt dynamics during the freeze/thaw period. Our results showed marked BDC occurred in all layers within the 0-100 cm profile in natural land, while mainly at the 20-80 cm profile in farmland. During the freezing period, BD in farmland and natural land first decreased rapidly and then remained relatively stable until the thawing period started. After that, BD gradually increased during the thawing period. The largest BDC in farmland and natural land were 0.48 g cm-3 (occurring at the 30-40 cm layer) and 0.43 g cm-3 (occurring at the 80-90 cm layer), respectively, close to 30 % of their initial values. The differences in BDC between the three land-use types were mainly owing to their differences in groundwater table depth, initial soil salt concentration, soil texture, and surface coverage conditions. Moreover, in farmland and natural land, ignoring BDC resulted in different degrees of overestimation or underestimation in soil water content, water fluxes, and soil hydrothermal properties in the selected soil layers. This study demonstrates that considering BDC can improve the accuracy of soil water-salt dynamics estimation in AASGT under freeze/thaw conditions.


Subject(s)
Groundwater , Soil , Water , Forests , Freezing , Sodium Chloride , China
2.
Water Res ; 217: 118353, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35405549

ABSTRACT

Field crop traits have and are experiencing significant changes due to genetic and agronomic improvements. How these changes affect regional water quantity and quality processes has not been clarified. The St. Joseph River Watershed (SJRW) located in the U.S. Corn Belt was selected as a case study area. Crop (corn and soybean) trait improvements in the past decades were reviewed and summarized and include changes of growing degree days (GDD), leaf area index (LAI), light utilization (LU), drought tolerance (DT), nutrient content (NC), and harvest index (HI). Based on a calibrated 9-year (from 2011 to 2019) SWAT (Soil and Water Assessment Tool) simulation in SJRW, sensitivities of the above crop traits to yield, ETa, stream flow, tile flow, surface runoff, and nutrient loads (NO3N, TN, soluble-P, and TP) were analyzed. Crop traits and their corresponding SWAT parameters for the 2010s were obtained from model calibration and used as the baseline/current scenario; for the 1980s, they were summarized from literature review and used as an historical scenario, while those for the 2040s were determined by assuming crop traits are changing linearly with time and projected as the future scenario. Water quantity and quality changes under the historical and future crop scenarios were compared with the baseline/current simulation. Results showed LU and DT were the most sensitive crop traits to water quantity (i.e., ETa, stream flow, tile flow, and surface runoff), while HI was the most sensitive to nutrient loads. The impacts of crop improvements on nutrient loads were more significant than on water budgets. Compared with the baseline, the historical and future scenarios resulted in 1.5 - 2.0% changes of stream flow, 6.8 - 18.6% changes of nitrogen loads (NO3N and TN) and 2.6 - 3.9% changes of phosphorus loads (soluble-P, and TP) in the stream flow, annually. Moreover, in certain months, these changes can reach about 12% for stream flow, 42% for nitrogen loads, and 12% for phosphorus loads. Nitrogen losses by tile drainage and percolation, and phosphorus losses by surface runoff and tile drainage were most significantly affected by the crop improvements. Future work should consider expected crop improvements when studying long-term hydrology and nutrient cycles in agricultural watersheds.


Subject(s)
Agriculture , Water , Nitrogen/analysis , Phosphorus/analysis , Rivers/chemistry , Water Quality , Zea mays
3.
Water Res ; 210: 117976, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34953214

ABSTRACT

Identifying the key processes and primary sources of water and nutrient losses is essential for water quantity and quality management in watersheds. This is especially true in the U.S. Corn Belt, which has been recognized as the primary region contributing nutrient loads to the Great Lakes and the Gulf of Mexico. A SWAT (Soil and Water Assessment Tool) model simulation was set up in an agricultural watershed with about 50% tile drainage area in the U.S. Corn Belt to study the water and nutrient balance components for the whole watershed and the corn-soybean rotation system. The SWAT model was improved to consider additional nitrogen and phosphorus loss paths from the soil. The model was comprehensively calibrated and validated for simulating monthly stream flow, total suspended solids (TSS), nutrient loads (including total Kjeldahl nitrogen (TKN), nitrate and nitrite nitrogen (NOx-N), total phosphorus (TP) and orthophosphate phosphorus (orthoP)), actual evapotranspiration (ETa), leaf area index (LAI) and annual crop yields in the watershed from 2011 to 2019. Results showed the model performance was very good for simulating the stream flow, TSS and ETa, and acceptable for nutrient loads, LAI and crop yields. ETa, surface runoff, lateral soil flow, tile drainage and percolation respectively accounted for 65%, 15%, 2%, 8% and 9% of the precipitation. Fertilizer was the main source of nitrogen and phosphorus input to the watershed, and harvested crops were the main paths removing nutrients. Surface runoff, tile drainage and percolation each contributed about 30% of total nitrogen losses to water, with surface runoff being dominated by organic nitrogen while tile drainage and percolation were dominated by nitrate nitrogen. Phosphorus losses were mainly through surface runoff, which resulted in 66% of the total losses and was dominated by organic phosphorus and soluble phosphorus. Representing about 49% of the watershed area, the corn-soybean rotation system contributed 83% and 88% of the total nitrogen and phosphorus inputs, respectively, to the watershed, as well as 64% and 46% of the nitrogen and phosphorus losses to the water system, respectively. The non-growing season (October to the next April) was identified as the critical period resulting in water and nutrient losses due to low evapotranspiration and plant uptake. Targeted management strategies for reducing nutrient loads in key hydrological paths were suggested.


Subject(s)
Water , Zea mays , Agriculture , Fertilizers , Nutrients
SELECTION OF CITATIONS
SEARCH DETAIL
...