Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37176250

ABSTRACT

Ge-Sb-Te compounds (GST), the well-known phase-change materials, are considered to be promising thermoelectric (TE) materials due to their decent thermoelectric performance. While Ge2Sb2Te5 and GeSb2Te4 have been extensively studied, the TE performance of GeSb4Te7 has not been well explored. Reducing the excessive carrier concentration is crucial to improving TE performance for GeSb4Te7. In this work, we synthesize a series of Se-alloyed GeSb4Te7 compounds and systematically investigate their structures and transport properties. Raman analysis reveals that Se alloying introduces a new vibrational mode of GeSe2, enhancing the interatomic interaction forces within the layers and leading to the reduction of carrier concentration. Additionally, Se alloying also increases the effective mass and thus improves the Seebeck coefficient of GeSb4Te7. The decrease in carrier concentration reduces the carrier thermal conductivity, depressing the total thermal conductivity. Finally, a maximum zT value of 0.77 and an average zT value of 0.48 (300-750 K) have been obtained in GeSb4Te5.5Se1.5. This work investigates the Raman vibration modes and the TE performance in Se-alloyed GeSb4Te7 sheddinglight on the performance optimization of other GST materials.

2.
Regen Biomater ; 9: rbac055, 2022.
Article in English | MEDLINE | ID: mdl-36072263

ABSTRACT

For the research of biomaterials in bone tissue engineering, it is still a challenge to fabricate bioceramics that overcome brittleness while maintaining the great biological performance. Here, inspired by the toughness of natural materials with hierarchical laminated structure, we presented a directional assembly-sintering approach to fabricate laminated MXene/calcium silicate-based (L-M/CS) bioceramics. Benefiting from the orderly laminated structure, the L-M/CS bioceramics exhibited significantly enhanced toughness (2.23 MPa·m1/2) and high flexural strength (145 MPa), which were close to the mechanical properties of cortical bone. Furthermore, the L-M/CS bioceramics possessed more suitable degradability than traditional CaSiO3 bioceramics due to the newly formed CaTiSiO5 after sintering. Moreover, the L-M/CS bioceramics showed good biocompatibility and could stimulate the expression of osteogenesis-related genes. The mechanism of promoting osteogenic differentiation had been shown to be related to the Wnt signaling pathway. This work not only fabricated calcium silicate-based bioceramics with excellent mechanical and biological properties for bone tissue engineering but also provided a strategy for the combination of bionics and bioceramics.

3.
ACS Appl Mater Interfaces ; 14(1): 1015-1023, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34951308

ABSTRACT

Phase transition is an effective strategy to engineer thermal conductivity and electrical transports. Recently, p-type CuAgTe1-xSex materials were reported to show excellent thermoelectric performance at 300-450 K, but the data are controversial due to the cooccurrence of phase transition in this temperature range. Accurately measuring and analyzing the electrical and thermal transport properties in the narrow phase transition temperature range is a quite challenging task. In this work, we systemically investigate the phase transition behavior, and electrical and thermal transport properties of p-type CuAgTe1-xSex (x = 0.3, 0.4, and 0.5) near 400 K. CuAgTe1-xSex (x = 0.3, 0.4, and 0.5) materials show similar phase transition temperatures but quite different phase transition speeds. The phase transition has a weak influence on the electrical transport properties of CuAgTe0.7Se0.3 and CuAgTe0.6Se0.4, but a strong influence on those of CuAgTe0.5Se0.5. Likewise, an obvious underestimation of thermal diffusivity, with a maximum deviation about 20% off the real value, is observed during the phase transition temperature range for CuAgTe1-xSex. Finally, CuAgTe0.7Se0.3 shows a peak zT around 0.9 at 390 K. The present study proves that CuAgTe1-xSex solid solutions are one kind of promising near-room-temperature thermoelectric material.

4.
Adv Mater ; 33(17): e2008773, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33760288

ABSTRACT

High-efficiency thermoelectric (TE) technology is determined by the performance of TE materials. Doping is a routine approach in TEs to achieve optimized electrical properties and lowered thermal conductivity. However, how to choose appropriate dopants with desirable solution content to realize high TE figure-of-merit (zT) is very tough work. In this study, via the use of large mass and strain field fluctuations as indicators for low lattice thermal conductivity, the combination of (Mg, Bi) in GeTe is screened as very effective dopants for potentially high zTs. In experiments, a series of (Mg, Bi) co-doped GeTe compounds are prepared and the electrical and thermal transport properties are systematically investigated. Ultralow lattice thermal conductivity, about 0.3 W m-1 K-1 at 600 K, is obtained in Ge0.9 Mg0.04 Bi0.06 Te due to the introduced large mass and strain field fluctuations by (Mg, Bi) co-doping. In addition, (Mg, Bi) co-doping can introduce extra electrons for optimal carrier concentration and diminish the energy offset at the top of the valence band for high density-of-states effective mass. Via these synthetic effects, a superhigh zT of ≈2.5 at 700 K is achieved for Ge0.9 Mg0.04 Bi0.06 Te. This study sheds light on the rational design of effective dopants in other TE materials.

5.
Phys Chem Chem Phys ; 22(14): 7374-7380, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32211646

ABSTRACT

Copper sulfides have attracted great attention recently in the thermoelectric community due to the liquid-like behavior of Cu ions. Among the numerous copper sulfides, digenite Cu1.80S has a poorer thermoelectric performance but better stability than the state-of-the-art binary copper sulfide Cu1.97S. In this study, good stability and high thermoelectric performance were simultaneously obtained in Fe-doped Cu1.80S. Because Fe ions will not form a concentration gradient under an external field to change the critical voltage, Fe-doped Cu1.80S samples inherit the good stability of the pristine Cu1.80S. The critical voltage for Cu1.80Fe0.064S is 0.16 V at 750 K, which has been the largest value reported so far. Likewise, the Fe dopants can significantly improve the thermoelectric performance by suppressing the too high electrical conductivity of Cu1.80S. The peak dimensionless figure of merit (zT) for Cu1.80Fe0.064S is around 0.8 at 750 K, about four times that of Cu1.80S. The average zT for Cu1.80Fe0.064S is 0.40 in 300-750 K, which is amongst the highest values in reported thermoelectric sulfides. Combining the good stability and high thermoelectric performance, the present Cu1.80Fe0.064S has great potential to be used in the application of waste heat harvesting in the middle temperature range.

6.
ACS Appl Mater Interfaces ; 11(14): 13433-13440, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30875476

ABSTRACT

Liquid-like binary Cu2-δX (X = S, Se, and Te) chalcogenides and their ternary solid solutions have gained notable attention in thermoelectrics due to their interesting and abnormal thermal and electrical transport properties. However, previous studies mainly focus on a single element alloying at either an anion or cation site whereas the investigation on cation/anion co-alloying is very rare so far. Here, a series of quaternary Cu2-2 xAg2 xSe1- xS x ( x = 0.01, 0.03, 0.05, 0.1, 0.15) liquid-like copper chalcogenide materials have been fabricated and the effects of Ag/S co-alloying on the thermoelectric properties of Cu2Se have been systematically studied. It is found that all compounds are mixed phases at room temperature but single cubic phase at high temperatures. The introduction of Ag and S in Cu2Se brings about a large mass fluctuation rather than strain field fluctuation that effectively suppresses the lattice thermal conductivity. Furthermore, on increasing the Ag and S contents, the high electrical conductivity of pristine Cu2Se is well tuned to the optimal range derived from the single parabolic band model analysis. Consequently, a peak zT of 1.6 at 900 K is achieved in Cu1.8Ag0.2Se0.9S0.1, which is about 33% higher than that of binary Cu2Se.

7.
Natl Sci Rev ; 6(5): 944-954, 2019 Oct.
Article in English | MEDLINE | ID: mdl-34691955

ABSTRACT

GeTe-based compounds have been intensively studied recently due to their superior thermoelectric performance, but their real applications are still limited so far due to the drastic volume variation that occurs during the rhombohedral-cubic phase transition, which may break the material or the material/electrode interface during service. Here, superior performance and high service stability for GeTe-based thermoelectric compounds are achieved by co-doping Mg and Sb into GeTe. The linear coefficient of thermal expansion before phase transition is greatly improved to match that after phase transition, yielding smooth volume variation around the phase transition temperature. Likewise, co-doping (Mg, Sb) in GeTe successfully tunes the carrier concentration to the optimal range and effectively suppresses the lattice thermal conductivity. A peak zT of 1.84 at 800 K and an average zT of 1.2 in 300-800 K have been achieved in Ge0.85Mg0.05Sb0.1Te. Finally, a Ni/Ti/Ge0.85Mg0.05Sb0.1Te thermoelectric uni-leg is fabricated and tested, showing quite good service stability even after 450 thermal cycles between 473 K and 800 K. This study will accelerate the application of GeTe-based compounds for power generation in the mid-temperature range.

8.
RSC Adv ; 9(14): 7826-7832, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-35521165

ABSTRACT

Copper-based chalcogenides have ultralow thermal conductivity and ultrahigh thermoelectric performance, but most of them are p-type semiconductors. It is urgent to develop n-type counterparts for high efficiency thermoelectric modules based on these copper based-chalcogenides. Cu4Sn7S16 is an intrinsically n-type semiconductor with complex crystal structure and low thermal conductivity. However, its thermoelectric properties have not been well studied when compared to the well-known n-type CuFeS2. In this work, high-quality Cu4Sn7S16-based compounds are fabricated and their thermoelectric properties are systematically studied. Using Ag and Sb as dopants, the carrier concentration is tuned over a wide range. The electrical transport properties can be well described by the single parabolic band model with carrier acoustic phonons scattering. It is revealed that Cu4Sn7S16 exhibits a low effective mass and relatively high mobility. The thermal conductivity is lower than 0.8 W m-1 K-1 from 300 to 700 K and shows a weak dependence on temperature. A maximum zT of 0.27 is obtained in Cu3.97Ag0.03Sn7S16 at 700 K. Further enhancement of thermoelectric performance is possible when a more efficient n-type dopant is used.

9.
Adv Mater ; 31(6): e1806518, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30549105

ABSTRACT

Thermal conductivity is a very basic property that determines how fast a material conducts heat, which plays an important and sometimes a dominant role in many fields. However, because materials with phase transitions have been widely used recently, understanding and measuring temperature-dependent thermal conductivity during phase transitions are important and sometimes even questionable. Here, the thermal transport equation is corrected by including heat absorption due to phase transitions to reveal how a phase transition affects the measured thermal conductivity. In addition to the enhanced heat capacity that is well known, it is found that thermal diffusivity can be abnormally lowered from the true value, which is also dependent on the speed of phase transitions. The extraction of the true thermal conductivity requires removing the contributions from both altered heat capacity and thermal diffusivity during phase transitions, which is well demonstrated in four selected kinds of phase transition materials (Cu2 Se, Cu2 S, Ag2 S, and Ag2 Se) in experiment. This study also explains the lowered abnormal thermal diffusivity during phase transitions in other materials and thus provides a novel strategy to engineer thermal conductivity for various applications.

10.
ACS Appl Mater Interfaces ; 10(25): 21372-21380, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29874028

ABSTRACT

Currently, the application of thermoelectric power generators based on Bi2Te3-based alloys for the recovery of low-quality waste heat is still limited because of the aggravated intrinsic excitation of the material at elevated temperatures. In this study, excessive Te and dopant I are introduced to the n-type Bi2Te2.4Se0.6 material with the purpose of suppressing its intrinsic excitation and improving the thermoelectric performance at elevated temperatures. These Te and I atoms act as electron donors to effectively reduce the density of minority carriers (holes) and weaken their negative contribution to the Seebeck coefficient. Likewise, the initial band structure and the carrier scattering mechanism are scarcely altered. Similar to the p-type Bi2Te3-based alloys, we found the "conductivity-limiting" mechanism is also well obeyed in the present n-type Bi2Te2.4Se0.6-based materials. The reduced minority carrier partial electrical conductivity in these Te-excessive and I-doped Bi2Te2.4Se0.6 samples significantly decreases the bipolar thermal conductivity, leading to lowered total thermal conductivity at elevated temperatures. Finally, the peak zT is successfully shifted up to higher temperatures for these Te-excessive and I-doped Bi2Te2.4Se0.6 samples. A maximum zT of 1.0 at 400 K and an average zT of 0.8 at 300-600 K have been realized in Te-excessive Bi2Te2.41Se0.6.

11.
ACS Appl Mater Interfaces ; 10(12): 10123-10131, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29498257

ABSTRACT

A novel quaternary Cu2MnSnSe4 diamondlike thermoelectric material was discovered recently based on the pseudocubic structure engineering. In this study, we show that introducing off-stoichiometry in Cu2MnSnSe4 effectively enhances its thermoelectric performance by simultaneously optimizing the carrier concentrations and suppressing the lattice thermal conductivity. A series of nonstoichiometric Cu2+δMn1-δSnSe4 (δ = 0, 0.025, 0.05, 0.075, and 0.1) samples has been prepared by the melting-annealing method. The X-ray analysis and the scanning electron microscopy measurement show that all nonstoichiometric samples are phase pure. The Rietveld refinement demonstrates that substituting part of Mn by Cu well maintains the structure distortion parameter η close to 1, but it induces obvious local distortions inside the anion-centered tetrahedrons. Significantly improved carrier concentrations are observed in these nonstoichiometric Cu2+δMn1-δSnSe4 samples, pushing the power factors to the theoretical maximal value predicted by the single parabolic model. Substituting part of Mn by Cu also reduces the lattice thermal conductivity, which is well interpreted by the Callaway model. Finally, a maximal thermoelectric dimensionless figure-of-merit zT around 0.60 at 800 K has been obtained in Cu2.1Mn0.9SnSe4, which is about 33% higher than that in the Cu2MnSnSe4 matrix compound.

12.
Chem Commun (Camb) ; 53(85): 11658-11661, 2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29018853

ABSTRACT

We report a ternary argyrodite-type Ag9GaSe6 compound as a promising thermoelectric material in a moderate temperature range. Due to high carrier mobility and ultralow lattice thermal conductivity, a maximum ZT of 1.1 was obtained with stoichiometric Ag9GaSe6 at 800 K. Via introducing slight Se-deficiency to optimize the carrier concentration, the maximum ZT is further enhanced to 1.3.

13.
Materials (Basel) ; 10(3)2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28772610

ABSTRACT

Recently, Cu-containing p-type Bi0.5Sb1.5Te3 materials have shown high thermoelectric performances and promising prospects for practical application in low-grade waste heat recovery. However, the position of Cu in Bi0.5Sb1.5Te3 is controversial, and the roles of Cu in the enhancement of thermoelectric performance are still not clear. In this study, via defects analysis and stability test, the possibility of Cu intercalation in p-type Bi0.5Sb1.5Te3 materials has been excluded, and the position of Cu is identified as doping at the Sb sites. Additionally, the effects of Cu dopants on the electrical and thermal transport properties have been systematically investigated. Besides introducing additional holes, Cu dopants can also significantly enhance the carrier mobility by decreasing the Debye screen length and weakening the interaction between carriers and phonons. Meanwhile, the Cu dopants interrupt the periodicity of lattice vibration and bring stronger anharmonicity, leading to extremely low lattice thermal conductivity. Combining the suppression on the intrinsic excitation, a high thermoelectric performance-with a maximum thermoelectric figure of merit of around 1.4 at 430 K-has been achieved in Cu0.005Bi0.5Sb1.495Te3, which is 70% higher than the Bi0.5Sb1.5Te3 matrix.

SELECTION OF CITATIONS
SEARCH DETAIL
...