Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 164: 181-190, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37059042

ABSTRACT

A small amount of leachate with complex composition will be produced during the compressing of municipal solid waste in refuse transfer stations. In this study, the freeze-melt method, a green and efficient wastewater treatment technology, was used to treat the compressed leachate. The effects of freezing temperature, freezing duration, and ice melting method on the removal rates of contaminants were investigated. The results showed that the freeze-melt method was not selective for the removal of chemical oxygen demand (COD), total organic carbon (TOC), ammonia-nitrogen (NH3-N) and total phosphorus (TP). The removal rate of contaminants was positively correlated with freezing temperature and negatively correlated with freezing duration, and the slower the growth rate of ice, the higher the purity of ice. When the compressed leachate was frozen at -15 °C for 42 h, the removal rates of COD, TOC, NH3-N and TP were 60.00%, 58.40%, 56.89% and 55.34%, respectively. Contaminants trapped in ice were removed during the melting process, especially in the early stages of melting. The divided melting method was more beneficial than the natural melting method in removing contaminants during the initial stage of melting, which contributes to the reduction of produced water losses. This study provides a new idea for the treatment of small amounts of highly concentrated leachate generated by compression facilities distributed in various corners of the city.


Subject(s)
Ice , Water Pollutants, Chemical , Freezing , Solid Waste , Ammonia/analysis , Nitrogen/analysis , Phosphorus , Water Pollutants, Chemical/analysis
2.
Toxics ; 10(10)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36287883

ABSTRACT

Atrazine, one of the most commonly used herbicides in the world, is of concern because of its frequent occurrence in various water bodies and the potential threat it constitutes to ecosystems. The transport of contaminants in seasonally ice-covered lakes is an important factor affecting the under-ice water environment, and changes in phase during ice growth and melting cause redistribution of atrazine between ice and water phases. To explore the migration pattern of atrazine during freezing and thawing, laboratory simulation experiments involving freezing and thawing were carried out. The effects of ice thickness, freezing temperature, and initial concentration on the migration ability of atrazine during freezing were investigated. The results showed that the relationship between the concentration of atrazine in ice and water during freezing was ice layer < water before freezing < water layer under the ice. Atrazine tended to migrate to under-ice water during the freezing process, and the intensity of migration was positively correlated with the ice thickness, freezing temperature, and initial concentration. During the thawing phase, atrazine trapped in the ice was released into the water in large quantities in the early stages. The first 20% of meltwater concentration was significantly higher than the average concentration in ice, with the highest case being 2.75 times the average concentration in ice. The results reported in this study are a useful reference for planning possible pollution control measures on such lakes during their freeze-thaw process.

SELECTION OF CITATIONS
SEARCH DETAIL
...