Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 44(1): 444-451, 2023 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-36635832

ABSTRACT

In order to explore the characteristics of organic carbon mineralization and the variation law of organic carbon components of an artificial forest in a loess hilly area, an artificial Robinia pseudoacacia forest restored for 13 years and the adjacent slope farmland were selected as the research objects, and indoor culture experiments under three different temperature treatments (15, 25, and 35℃) were carried out. The results indicated that the mineralization rate of soil organic carbon decreased sharply at first and then stabilized. The cumulative release of organic carbon increased rapidly in the initial stage of culture and gradually slowed in the later stage. Soil organic carbon mineralization in sloping farmland was more sensitive to temperature change, and its temperature sensitivity coefficient Q10 was 1.52, whereas that in R. pseudoacacia forest land was only 1.38. According to the fitting of the single reservoir first-order dynamic equation, the soil mineralization potential Cp of R. pseudoacacia forest land and slope farmland was between 2.02-4.32 g·kg-1 and 1.25-3.17 g·kg-1, respectively, that is, the mineralization potential of the R. pseudoacacia forest was higher. During the cultivation period, the content of various active organic carbon components decreased with time, and that in the R. pseudoacacia forest land was greater than that in the slope land. The cumulative carbon release of soil was significantly positively correlated with the contents of MBC and DOC (P<0.05), and Q10 (15-25℃) was negatively correlated with the contents of SOC, EOC, and SWC (P<0.05). These results could provide some reference for the study of soil carbon sequestration in loess hilly regions under climate change.


Subject(s)
Robinia , Soil , Carbon/analysis , Nitrogen/analysis , Forests , Charcoal , China
2.
Huan Jing Ke Xue ; 43(9): 4839-4847, 2022 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-36096624

ABSTRACT

In order to explore the effects of straw returning combined with fertilizer on soil nutrients and winter wheat yield in the Guanzhong area, an experimental split plot design was utilized. The main plot consisted of no straw returning (S0) and straw returning (S). The sub-regions consisted of no fertilizer (WF), nitrogen fertilizer (NF), and nitrogen and phosphate fertilizer (NPF). Ecological stoichiometry was used to study the relationship between soil carbon, nitrogen, phosphorus content, and yield under straw returning combined with nitrogen and phosphorus fertilizer conditions. The results showed that straw and fertilization interactions had significant effects on soil organic carbon, total nitrogen, and total phosphorus contents in the surface layer (0-20 cm) (P<0.05). Compared with that in the S0WF treatment, the SNPF treatment significantly increased soil organic carbon and total nitrogen contents in the surface layer (0-20 cm) (P<0.05). The interaction between straw and year had significant effects on soil total nitrogen content in the surface layer (0-20 cm) (P<0.05). With the increase in straw returning time, the total nitrogen content of soil 0-20 cm under the SWF treatment was significantly higher than that under the S0WF treatment (P<0.05). Straw and fertilization and their interaction had no significant effects on organic carbon and total nitrogen contents in the 20-40 cm soil layer (P>0.05). Straw and straw interaction with fertilization significantly affected total P content in 20-40 cm soil (P<0.05). Compared with that in the SWF treatment, the SNPF treatment significantly increased the total phosphorus content in the 20-40 cm soil layer (P<0.05). Straw returning combined with chemical fertilizer also had a significant effect on soil stoichiometry. Compared with that in the S0WF treatment, the S0NPF treatment decreased soil C:N in the surface layer (0-20 cm) and increased soil C:P and N:P in the surface layer (0-20 cm). Compared with that in the SWF treatment, the SNF treatment reduced soil C:N in the surface layer (0-20 cm). Straw returning combined with chemical fertilizer also had a significant effect on winter wheat yield. In 2020 and 2021, the SNPF treatment increased production by 24.23% and 28.9%, respectively, compared with that of the S0WF treatment. Correlation analysis showed that yield was significantly positively correlated with C:N (P<0.05) and C:P (P<0.01). At the same time, total nitrogen and N:P were positively correlated with treatment years (P<0.001). In conclusion, straw returning and that combined with nitrogen and phosphate fertilizer (SNPF) can improve soil nutrient characteristics, change soil stoichiometric characteristics, and increase yield in the Guanzhong area. Therefore, the results of this study indicate that straw returning combined with nitrogen and phosphate fertilizer (SNPF) is an effective way to optimize regional farmland nutrient management and improve grain production capacity.


Subject(s)
Fertilizers , Soil , Agriculture/methods , Carbon/analysis , Fertilizers/analysis , Nitrogen/analysis , Nutrients/analysis , Phosphates/analysis , Phosphorus , Soil/chemistry , Triticum
3.
Huan Jing Ke Xue ; 43(2): 1050-1058, 2022 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-35075879

ABSTRACT

To reveal the change in the characteristics of soil microbial C-degrading enzyme activities and the response to the components of C during the restoration process of Robinia pseudoacacia forests in the Loess Plateau, the components of the soil C pool, C-degrading enzyme activities, and microbial metabolic entropy of R. pseudoacacia in different restoration stages were studied, and the response relationship between C-degrading enzymes and soil C components was explored. The results showed that the microbial respiration (MR) first increased and then decreased with the restored years. We found that the microbial metabolic entropy (qCO2) decreased significantly with the restored years, but the microbial entropy (qMB) increased. Soil C-degrading enzymes increased significantly in the early-stage restoration of R. pseudoacacia; however, oxidizing enzymes (PO and PER) and cellobiohydrolase (CBH) decreased in the late stage of restoration. The soil organic C and recalcitrant organic C increased significantly with the restored years; however, there was no significant difference for the labile organic C. Correlation analysis and the partial least squares-path model (PLS-PM) showed that soil C-degrading enzymes and C components were significantly correlated with microbial respiration and entropy (qCO2 and qMB), respectively. The hydrolytic enzyme (BG+CBH) was significantly positively correlated with SOC, microbial biomass C, qMB, and recalcitrant and labile organic C. The oxidizing enzyme (PO+PER) was significantly positively correlated with the soil clay and qCO2. In addition, the recalcitrant organic C was the key driver of soil microbial metabolism affected by vegetation restoration. Overall, the ecosystem of R. pseudoacacia plantations would gradually stabilize with the increase in restored years and significantly increase the sequestration effect of soil C. These results will be helpful to understand the transformation rule and regulation mechanism of the soil C pool in vulnerable habitats and provide scientific basis for the restoration and management of vegetation in the Loess Plateau.


Subject(s)
Robinia , Carbon/analysis , China , Ecosystem , Soil , Soil Microbiology
4.
Huan Jing Ke Xue ; 41(12): 5668-5676, 2020 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-33374084

ABSTRACT

In order to explore the impacts of nitrogen fertilizer and straw returning methods on N2O emissions, a two-factor split-zone design was adopted for experimentation under the winter wheat-summer maize rotation model in the Guanzhong area of Shanxi, China. The main areas of interest were conventional nitrogen (G) and reduced nitrogen (70% G); the sub-areas were straw no return (N), straw return (S), and straw return + biochar (SB); we analyzed their impacts on N2O emissions and crop yield, and the relationships with related impact factors. The results showed that the N2O emissions peaks appeared in the wheat season and maize season treatments within 5-16 days after fertilization, and also appeared after rainfall. The N2O flux was significantly and positively correlated with soil temperature and NH4+-N content. Regardless of the wheat season, maize season, or annual total N2O emissions, the 70% GSB treatment was the lowest and the GS treatment was the highest. At the same level of nitrogen application, S treatment increased N2O emissions, SB treatment could reduce N2O emissions, both S and SB treatments could significantly increase crop yields, and SB production increased more; 70%G-level annual N2O emissions, when compared with the G level, had been reduced by 40% to 48%, while the yield has not decreased significantly. Through comprehensive consideration, a reduction of nitrogen by 30% was achieved through the combination of straw + biochar on the basis of conventional nitrogen application, while ensuring high crop yields and the best N2O emissions reduction.


Subject(s)
Fertilizers , Soil , Agriculture , China , Nitrogen , Nitrous Oxide/analysis , Triticum , Zea mays
SELECTION OF CITATIONS
SEARCH DETAIL
...