Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474209

ABSTRACT

Salinization of cultivated soils may result in either high salt levels or alkaline conditions, both of which stress crops and reduce performance. We sampled genotypes included in the Northeast China soybean germplasm population (NECSGP) to identify possible genes that affect tolerance to alkaline soil conditions. In this study, 361 soybean accessions collected in Northeast China were tested under 220 mM NaHCO3:Na2CO3 = 9:1 (pH = 9.8) to evaluate the alkali-tolerance (ATI) at the seedling stage in Mudanjiang, Heilongjiang, China. The restricted two-stage multi-locus model genome-wide association study (RTM-GWAS) with gene-allele sequences as markers (6503 GASMs) based on simplified genome resequencing (RAD-sequencing) was accomplished. From this analysis, 132 main effect candidate genes with 359 alleles and 35 Gene × Environment genes with 103 alleles were identified, explaining 90.93% and 2.80% of the seedling alkali-tolerance phenotypic variation, respectively. Genetic variability of ATI in NECSGP was observed primarily within subpopulations, especially in ecoregion B, from which 80% of ATI-tolerant accessions were screened out. The biological functions of 132 candidate genes were classified into eight functional categories (defense response, substance transport, regulation, metabolism-related, substance synthesis, biological process, plant development, and unknown function). From the ATI gene-allele system, six key genes-alleles were identified as starting points for further study on understanding the ATI gene network.


Subject(s)
Genome-Wide Association Study , Seedlings , Alleles , Seedlings/genetics , Quantitative Trait Loci , Glycine max , Polymorphism, Single Nucleotide , Soil , China
2.
Front Plant Sci ; 13: 896549, 2022.
Article in English | MEDLINE | ID: mdl-35903228

ABSTRACT

Northeast China is a major soybean production region in China. A representative sample of the Northeast China soybean germplasm population (NECSGP) composed of 361 accessions was evaluated for their seed protein content (SPC) in Tieling, Northeast China. This SPC varied greatly, with a mean SPC of 40.77%, ranging from 36.60 to 46.07%, but it was lower than that of the Chinese soybean landrace population (43.10%, ranging from 37.51 to 50.46%). The SPC increased slightly from 40.32-40.97% in the old maturity groups (MG, MGIII + II + I) to 40.93-41.58% in the new MGs (MG0 + 00 + 000). The restricted two-stage multi-locus genome-wide association study (RTM-GWAS) with 15,501 SNP linkage-disequilibrium block (SNPLDB) markers identified 73 SPC quantitative trait loci (QTLs) with 273 alleles, explaining 71.70% of the phenotypic variation, wherein 28 QTLs were new ones. The evolutionary changes of QTL-allele structures from old MGs to new MGs were analyzed, and 97.79% of the alleles in new MGs were inherited from the old MGs and 2.21% were new. The small amount of new positive allele emergence and possible recombination between alleles might explain the slight SPC increase in the new MGs. The prediction of recombination potentials in the SPC of all the possible crosses indicated that the mean of SPC overall crosses was 43.29% (+2.52%) and the maximum was 50.00% (+9.23%) in the SPC, and the maximum transgressive potential was 3.93%, suggesting that SPC breeding potentials do exist in the NECSGP. A total of 120 candidate genes were annotated and functionally classified into 13 categories, indicating that SPC is a complex trait conferred by a gene network.

3.
Theor Appl Genet ; 133(6): 1839-1857, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32030467

ABSTRACT

KEY MESSAGE: This population genetic study is characterized with direct comparisons of days to flowering QTL-allele matrices between newly evolved and originally old maturity groups of soybeans to explore its evolutionary dynamics using the RTM-GWAS procedure. The Northeast China (NEC) soybeans are the major germplasm source of modern soybean production in Americas (> 80% of the world total). NEC is a relatively new soybean area in China, expanded after its nomadic status in the seventeenth century. At nine sites of four ecoregions in NEC, 361 varieties were tested for their days to flowering (DTF), a geography-sensitive trait as an indicator for maturity groups (MGs). The DTF reduced obviously along with soybeans extended to higher latitudes, ranging in 41-83 days and MG 000-III. Using the RTM-GWAS (restricted two-stage multi-locus model genome-wide association study) procedure, 81 QTLs with 342 alleles were identified, accounting for 77.85% genetic contribution (R2 = 0.01-7.74%/locus), and other 20.75% (98.60-77.85%, h2 = 98.60%) genetic variation was due to a collective of unmapped QTLs. With soybeans northward, breeding effort made the original MG I-III evolved to MG 0-00-000. In direct comparisons of QTL-allele matrices among MGs, the genetic dynamics are identified with local exotic introduction/migration (58.48%) as the first and selection against/exclusion of positive alleles causing new recombination (40.64%) as the second, while only a few allele emergence/mutation happened (0.88%, limited in MG 0, not in MG 00-000). In new MG emergence, 24 QTLs with 19 candidate genes are the major sources. A genetic potential of further DTF shortening (13-21 days) is predicted for NEC population. The QTL detection in individual ecoregions showed various ecoregion-specific QTLs-alleles/genes after co-localization treatment (removing the random environment shifting ones).


Subject(s)
Alleles , Genetic Association Studies , Glycine max/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , China , Chromosome Mapping , Flowers/genetics , Genotype , Linkage Disequilibrium , Phenotype
4.
Genome Biol ; 18(1): 161, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28838319

ABSTRACT

BACKGROUND: Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. RESULTS: To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. CONCLUSIONS: This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.


Subject(s)
Genome, Plant , Genome-Wide Association Study , Genomics , Glycine max/genetics , Quantitative Trait Loci , Quantitative Trait, Heritable , Breeding , Fatty Acids/metabolism , Gene Regulatory Networks , Genetic Variation , Genome-Wide Association Study/methods , Genomics/methods , Genotype , Phenotype , Phylogeny , Phylogeography , Polymorphism, Single Nucleotide , Glycine max/classification , Glycine max/metabolism
5.
Breed Sci ; 67(3): 221-232, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28744175

ABSTRACT

The maturity date of soybean (Glycine max (L.) Merr.) is sensitive to photoperiod, which varies with latitude and growing seasons. The maturity group (MG) system, composed of 13 MGs, is a major approach in characterizing varieties' ecological properties and adaptable areas. A total of 512 world soybean varieties, including 48 MG checks, were tested at a major site (Nanjing, 32.04°N) with portions tested in supplementary sites (Heihe, 50.22°N; Mudanjiang, 44.60°N; Jining, 35.38°N and Nanning, 22.84°N) in China to explore the world-wide MG distribution. The maturity date of the world soybean varied greatly (75-201 d) in Nanjing. Along with soybeans disseminated to new areas, the MGs further expanded during the last 70 years from MG I-VII to the early MG 0-000 in the north continents and to the late MG VIII-X in the south continents with the growth period structure differentiated into two subgroups in each MG 0-VIII except V. The cluster analysis among MGs and subgroups using genome-wide markers validated the MG sequential emergence order and the subgroup differentiation in eight MGs. For future evaluation, in addition to one major site (Nanjing), one supplementary southern site (Nanning) and one supplementary northern site (Heihe) are sufficient.

6.
PLoS One ; 9(5): e97636, 2014.
Article in English | MEDLINE | ID: mdl-24830458

ABSTRACT

The time to flowering and maturity are ecologically and agronomically important traits for soybean landrace and cultivar adaptation. As a typical short-day crop, long day conditions in the high-latitude regions require soybean cultivars with photoperiod insensitivity that can mature before frost. Although the molecular basis of four major E loci (E1 to E4) have been deciphered, it is not quite clear whether, or to what degree, genetic variation and the expression level of the four E genes are associated with the time to flowering and maturity of soybean cultivars. In this study, we genotyped 180 cultivars at E1 to E4 genes, meanwhile, the time to flowering and maturity of those cultivars were investigated at six geographic locations in China from 2011 to 2012 and further confirmed in 2013. The percentages of recessive alleles at E1, E2, E3 and E4 loci were 38.34%, 84.45%, 36.33%, and 7.20%, respectively. Statistical analysis showed that allelic variations at each of four loci had a significant effect on flowering time as well as maturity. We classified the 180 cultivars into eight genotypic groups based on allelic variations of the four major E loci. The genetic group of e1-nf representing dysfunctional alleles at the E1 locus flowered earliest in all the geographic locations. In contrast, cultivars in the E1E2E3E4 group originated from the southern areas flowered very late or did not flower before frost at high latitude locations. The transcriptional abundance of functional E1 gene was significantly associated with flowering time. However, the ranges of time to flowering and maturity were quite large within some genotypic groups, implying the presence of some other unknown genetic factors that are involved in control of flowering time or maturity. Known genes (e.g. E3 and E4) and other unknown factors may function, at least partially, through regulation of the expression of the E1 gene.


Subject(s)
Flowers/physiology , Gene Expression Regulation, Plant , Genetic Variation , Glycine max/genetics , Quantitative Trait Loci , Alleles , China , Flowers/genetics , Genes, Plant , Genotype , Geography , Linear Models , Phenotype , Photoperiod , Glycine max/physiology , Temperature , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...