Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937576

ABSTRACT

Reperfusion injury, which is distinct from ischaemic injury, occurs when blood flow is restored in previously ischaemic brain tissue, further compromising neurons and other cells and worsening the injury. There is currently a lack of pharmaceutical agents and therapeutic interventions that specifically mitigate cerebral ischaemia/reperfusion (I/R) injury. Ginsenoside Rg1 (Rg1), a protopanaxatriol-type saponin isolated from Panax ginseng C. A. Meyer, has been found to protect against cerebral I/R injury, but its intricate protective mechanisms remain to be elucidated. Numerous studies have shown that autophagy plays a crucial role in protecting brain tissue during the I/R process and is emerging as a promising therapeutic strategy for effective treatment. In this study, we investigated whether Rg1 protected against I/R damage in vitro and in vivo by regulating autophagy. Both MCAO and OGD/R models were established. SK-N-AS and SH-SY5Y cells were subjected to OGD followed by reperfusion with Rg1 (4-32 µM). MCAO mice were injected with Rg1 (30 mg·kg-1·d-1. i.p.) for 3 days before and on the day of surgery. Rg1 treatment significantly mitigated ischaemia/reperfusion injury both in vitro and in vivo. Furthermore, we demonstrated that the induction of autophagy contributed to I/R injury, which was effectively inhibited by Rg1 in both in vitro and in vivo models of cerebral I/R injury. Rg1 inhibited autophagy through multiple steps, including impeding autophagy initiation, inducing lysosomal dysfunction and inhibiting cathepsin enzyme activities. We revealed that mTOR activation was pivotal in mediating the inhibitory effect of Rg1 on autophagy. Treatment with Torin-1, an autophagy inducer and mTOR-specific inhibitor, significantly reversed the impact of Rg1 on autophagy, decreasing its protective efficacy against I/R injury both in vitro and in vivo. In conclusion, our results suggest that Rg1 may serve as a promising drug candidate against cerebral I/R injury by inhibiting autophagy through activation of mTOR signalling.

2.
Front Chem ; 10: 877469, 2022.
Article in English | MEDLINE | ID: mdl-35433627

ABSTRACT

The emergence of antibiotic resistance in Staphylococcus aureus has necessitated the development of innovative anti-infective agents acting on novel targets. Alpha-hemolysin (Hla), a key virulence factor of S. aureus, is known to cause various cell damage and death. In this study, with bioassay-guided fractionation, a pair of unusual epimeric lignan trimers, ligustchuanes A and B (1 and 2), were isolated from the rhizomes of Ligusticum chuanxiong Hort, together with two known phthalides being identified by UPLC-QTOF-MS. To the best of our knowledge, trimers with rare C8-C9″-type neolignan and ferulic acid fragments have not been identified in any natural product. Both of them were isolated as racemic mixtures, and their absolute configurations were determined by comparing experimental and calculated ECD spectra after enantioseparation. Ligustchuane B exhibited an outstanding inhibitory effect on α-hemolysin expression in both MRSA USA300 LAC and MSSA Newman strains at concentrations of 3 and 6 µM, respectively. Notably, a mouse model of infection further demonstrated that ligustchuane B could attenuate MRSA virulence in vivo.

3.
Food Funct ; 13(9): 5050-5060, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35403637

ABSTRACT

Due to the rapid evolution of antibiotic resistance in Staphylococcus aureus, antivirulence therapy may be a promising alternative for the effective control of the spread of resistant pathogens. The Chinese Materia Medica has been widely used for the treatment of diseases and production of health foods, and it remains a valuable resource for the discovery of compounds possessing antivirulence activity. Through a Caenorhabditis elegans infection model, an EtOAc-soluble fraction of 80% EtOH extract of Salvia miltiorrhiza Bunge (SMEA) was found to possess potential anti-infective activity against S. aureus. Then, several in vitro assays indicated that SMEA had robust antivirulence activity at the dose of 400 µg mL-1, reducing hemolytic activity and α-hemolysin expression in S. aureus. Furthermore, at 100 mg kg-1, SMEA reduced abscess formation in the main organs of mice challenged with S. aureus. In order to identify the bioactive components of SMEA and investigate the mechanisms underlying the antivirulence activity, SMEA was separated using bioassay-guided fractionation. As a result, eight compounds were identified in SMEA. Among them, tanshinone IIB (TNB) showed strong antivirulence activity both in vitro and in vivo. Furthermore, at 24 µg mL-1, TNB significantly reduced the expression of RNAIII and psmα, indicating that the mechanism underlying TNB activity was related to the accessory gene regulator quorum sensing system. In conclusion, TNB's antivirulence properties make it a promising candidate for drug development against S. aureus infections.


Subject(s)
Anti-Infective Agents , Salvia miltiorrhiza , Staphylococcal Infections , Animals , Anti-Bacterial Agents/metabolism , Anti-Infective Agents/pharmacology , Mice , Quorum Sensing , Staphylococcal Infections/drug therapy , Staphylococcus aureus , Virulence
4.
J Nat Prod ; 84(4): 1397-1402, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33683883

ABSTRACT

Guttiferone F, a natural polyprenylated polycyclic acylphloroglucinol, was originally assigned as the 30-epimer of garcinol by NMR data analyses. Conversion of guttiferone F in the presence of acid afforded its cyclized form (2a), which was previously assigned as 30-epi-cambogin. However, the absolute configurations of guttiferone F and 2a have not been determined. Reinvestigation of the structures of those two compounds, using X-ray and NMR data analyses and chemical transformation, revealed that the original assignment of the C-30 absolute configuration in guttiferone F and 2a should be inverted. Guttiferone F is indeed garcinol, and 2a, which was previously identified as 30-epi-cambogin, is cambogin.


Subject(s)
Benzophenones/chemistry , Garcinia/chemistry , Terpenes/chemistry , China , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...