Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 16(19): e202300736, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37321966

ABSTRACT

Layered low-dimensional halide perovskites (LDPs) with multiple quantum well structure have shown increasing research interest in photovoltaic solar cell applications owing to their intrinsic moisture stability and favorable photophysical properties in comparison with their three-dimensional (3D) counterparts. The most common LDPs are Ruddlesden-Popper (RP) phases and Dion-Jacobson (DJ) phases, both of which have made significant research advances in efficiency and stability. However, distinct interlayer cations between RP and DJ phase lead to disparate chemical bonds and different perovskite structures, which endow RP and DJ perovskite with distinctive chemical and physical properties. Plenty of reviews have reported the research progress of LDPs but no summary has elaborated from the perspective of the merits and drawbacks of the RP and DJ phases. Herein, in this review, we offer a comprehensive expound on the merits and promises of RP and DJ LDPs from their chemical structure, physicochemical properties, and photovoltaic performance research progress aiming to provide a new insight into the dominance of RP and DJ phases. Then, we reviewed the recent progress on the synthesis and implementation of RP and DJ LDPs thin films and devices, as well as their optoelectronic properties. Finally, we discussed the possible strategies to resolve existing toughs to realize the desired high-performance LDPs solar cells.

2.
Chemistry ; 29(47): e202301214, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37269539

ABSTRACT

NiOx-based inverted perovskite solar cells (PSCs) have attracted growing attention due to their low cost and large-scale application potential. However, the efficiency and stability of inverted planar heterojunction PSCs is still unsatisfactory owing to insufficient charge-extraction caused by undesirable interfacial contact between perovskite and NiOx hole transport layers (HTLs). Herein an interfacial passivation strategy with guanidinium salts (guanidinium thiocyanate (GuASCN), guanidine hydrobromide (GuABr), guanidine hydriodate (GuAI)) as passivator is employed to solve this problem. We systematically study the effect of various guanidinium salts on the crystallinity, morphology, and photophysical properties of perovskite films. Guanidine salt as interfacial passivator can decrease interface resistance, reduce carrier non-radiative recombination, and boost carrier extraction. Notably, the GuABr-treated unencapsulated devices can still maintain more than 90 % of their initial PCE after aging for 1600 h at 16-25 °C and 35 %-50 % relative humidity in ambient conditions. This work reveals the significance of counterions in improving the photovoltaic performance and stability of PSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...