Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(5): 3553-3563, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38285529

ABSTRACT

Flexible membranes with ultrathin thickness and excellent mechanical properties have shown great potential for broad uses in solid polymer electrolytes (SPEs), on-skin electronics, etc. However, an ultrathin membrane (<5 µm) is rarely reported in the above applications due to the inherent trade-off between thickness and antifailure ability. We discover a protic solvent penetration strategy to prepare ultrathin, ultrastrong layered films through a continuous interweaving of aramid nanofibers (ANFs) with the assistance of simultaneous protonation and penetration of a protic solvent. The thickness of a pure ANF film can be controlled below 5 µm, with a tensile strength of 556.6 MPa, allowing us to produce the thinnest SPE (3.4 µm). The resultant SPEs enable Li-S batteries to cycle over a thousand times at a high rate of 1C due to the small ionic impedance conferred by the ultrathin characteristic and regulated ionic transportation. Besides, a high loading of the sulfur cathode (4 mg cm-2) with good sulfur utilization was achieved at a mild temperature (35 °C), which is difficult to realize in previously reported solid-state Li-S batteries. Through a simple laminating process at the wet state, the thicker film (tens of micrometers) obtained exhibits mechanical properties comparable to those of thin films and possesses the capability to withstand high-velocity projectile impacts, indicating that our technique features a high degree of thickness controllability. We believe that it can serve as a valuable tool to assemble nanomaterials into ultrathin, ultrastrong membranes for various applications.

2.
J Am Chem Soc ; 145(44): 24260-24271, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37886822

ABSTRACT

Lithium metal batteries (LMBs) coupled with a high-voltage Ni-rich cathode are promising for meeting the increasing demand for high energy density. However, aggressive electrode chemistry imposes ultimate requirements on the electrolytes used. Among the various optimized electrolytes investigated, localized high-concentration electrolytes (LHCEs) have excellent reversibility against a lithium metal anode. However, because they consist of thermally and electrochemically unstable solvents, they have inferior stability at elevated temperatures and high cutoff voltages. Here we report a semisolvated sole-solvent electrolyte to construct a typical LHCE solvation structure but with significantly improved stability using one bifunctional solvent. The designed electrolyte exhibits exceptional stability against both electrodes with suppressed lithium dendrite growth, phase transition, microcracking, and transition metal dissolution. A Li||Ni0.8Co0.1Mn0.1O2 cell with this electrolyte operates stably over a wide temperature range from -20 to 60 °C and has a high capacity retention of 95.6% after the 100th cycle at 4.7 V, and ∼80% of the initial capacity is retained even after 180 cycles. This new electrolyte indicates a new path toward future electrolyte engineering and safe high-voltage LMBs.

3.
Angew Chem Int Ed Engl ; 62(20): e202301114, 2023 May 08.
Article in English | MEDLINE | ID: mdl-36869006

ABSTRACT

The development of flexible zinc-air batteries (FZABs) has attracted broad attention in the field of wearable electronic devices. Gel electrolyte is one of the most important components in FZABs, which is urgent to be optimized to match with Zn anode and adapt to severe climates. In this work, a polarized gel electrolyte of polyacrylamide-sodium citric (PAM-SC) is designed for FZABs, in which the SC molecules contain large amount of polarized -COO- functional groups. The polarized -COO- groups can form an electrical field between gel electrolyte and Zn anode to suppress Zn dendrite growth. Besides, the -COO- groups in PAM-SC can fix H2 O molecules, which prevents water from freezing and evaporating. The polarized PAM-SC hydrogel delivers a high ionic conductivity of 324.68 mS cm-1 and water retention of 96.85 % after being exposed for 96 h. FZABs with the PAM-SC gel electrolyte exhibit long cycling life of 700 cycles at -40 °C, showing the application prospect under extreme conditions.

4.
ACS Nano ; 17(5): 4453-4462, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36812013

ABSTRACT

Lithium metal is a desirable anode for high-energy density lithium-sulfur (Li-S) batteries. However, its reliability is severely limited by dendrite growth and side reactions with polysulfides, which are yet challenging to solve simultaneously. Herein, we report a protective layer that works the same way as the ion-permselective cell membrane, yielding a corrosion-resistant and dendrite-free Li metal anode specially for Li-S batteries. A self-limited assembly of octadecylamine together with Al3+ ions on a Li metal anode surface produces a dense, stable yet thin layer with ionic conductive Al-Li alloy uniformly embedded in it, which prevents the passage of polysulfides but regulates the penetrated Li ion flux for uniform Li deposition. As a result, the assembled batteries show excellent cycling stability even with a high sulfur-loaded cathode, suggesting a straightforward but promising strategy to stabilize highly active anodes for practical applications.

5.
Angew Chem Int Ed Engl ; 62(15): e202300966, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36788164

ABSTRACT

High-voltage lithium metal batteries (LMBs) pose severe challenges for the matching of electrolytes with aggressive electrodes, especially at low temperatures. Here, we report a rational modification of the Li+ solvation structure to extend the voltage and temperature operating ranges of conventional electrolytes. Ion-ion and ion-dipole interactions as well as the electrochemical window of solvents were tailored to improve oxidation stability and de-solvation kinetics of the electrolyte. Meanwhile, robust and elastic B and F-rich interphases are formed on both electrodes. Such optimization enables Li||LiNi0.5 Mn1.5 O4 cells (90.2 % retention after 400 cycles) and Li||LiNi0.6 Co0.2 Mn0.2 O2 (NCM622) cells (74.0 % retention after 200 cycles) to cycle stably at an ultra-high voltage of 4.9 V. Moreover, NCM622 cells deliver a considerable capacity of 143.5 mAh g-1 at -20 °C, showing great potential for practical uses. The proposed strategy sheds light on further optimization for high-voltage LMBs.

6.
J Colloid Interface Sci ; 607(Pt 2): 1953-1962, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34695744

ABSTRACT

HYPOTHESIS: Developing the supercritical carbon dioxide microemulsion with a broad water content (W0) window can provide more possibility for designing highly efficient chemical processes, which is challenging due to the lack of comprehension about its formation mechanism. Molecular dynamics simulation method is expected to reveal the microscopic stabilization mechanism of high-W0 microemulsions. SIMULATIONS: All-atom molecular dynamics simulations of the ternary systems with varied W0 stabilized by 4FG(EO)2 surfactant were designed according to phase behavior experiments. A systematic investigation was performed concerning the self-assembling, equilibrium morphology and detailed microstructure of the microemulsion droplet. An in-depth comparative study about the distribution of both H2O and CO2, the interfacial behaviors of 4FG(EO)2, as well as the microscopic interactions was conducted. FINDINGS: For the first time, direct evidence was provided for the formation of water-in-carbon dioxide microemulsion with extremely high W0 (80) under the effect of 4FG(EO)2. Furthermore, a unique interfacial phenomenon, i. e. CO2 accumulating at the interface, was revealed to be responsible for the formation and enhanced stability of the nanosized droplet with high W0. This should set a new guiding star for synthesizing and selecting effective interfacial modifiers to create high-W0 microemulsions.

SELECTION OF CITATIONS
SEARCH DETAIL
...