Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(10): e0293367, 2023.
Article in English | MEDLINE | ID: mdl-37874846

ABSTRACT

Cystic fibrosis (CF) is a genetic disease hallmarked by aberrant ion transport that results in delayed mucus clearance, chronic infection, and progressive lung function decline. Several animal models have been developed to study the airway anatomy and mucus physiology in CF, but they are costly and difficult to maintain, making them less accessible for many applications. A more available CFTR-/- rat model has been developed and characterized to develop CF airway abnormalities, but consistent dosing of pharmacologic agents and longitudinal evaluation remain a challenge. In this study, we report the development and characterization of a novel ex vivo trachea model that utilizes both wild type (WT) and CFTR-/- rat tracheae cultured on a porcine gelatin matrix. Here we show that the ex vivo tracheae remain viable for weeks, maintain a CF disease phenotype that can be readily quantified, and respond to stimulation of mucus and fluid secretion by cholinergic stimulation. Furthermore, we show that ex vivo tracheae may be used for well-controlled pharmacological treatments, which are difficult to perform on freshly excised trachea or in vivo models with this degree of scrutiny. With improved interrogation possible with a durable trachea, we also established firm evidence of a gland secretion defect in CFTR-/- rat tracheae compared to WT controls. Finally, we demonstrate that the ex vivo tracheae can be used to generate high mucus protein yields for subsequent studies, which are currently limited by in vivo mucus collection techniques. Overall, this study suggests that the ex vivo trachea model is an effective, easy to set up culture model to study airway and mucus physiology.


Subject(s)
Cystic Fibrosis , Swine , Animals , Rats , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Trachea/metabolism , Biological Transport , Mucus/metabolism
2.
JCI Insight ; 8(1)2023 01 10.
Article in English | MEDLINE | ID: mdl-36625345

ABSTRACT

Substantial clinical evidence supports the notion that ciliary function in the airways is important in COVID-19 pathogenesis. Although ciliary damage has been observed in both in vitro and in vivo models, the extent or nature of impairment of mucociliary transport (MCT) in in vivo models remains unknown. We hypothesize that SARS-CoV-2 infection results in MCT deficiency in the airways of golden Syrian hamsters that precedes pathological injury in lung parenchyma. Micro-optical coherence tomography was used to quantitate functional changes in the MCT apparatus. Both genomic and subgenomic viral RNA pathological and physiological changes were monitored in parallel. We show that SARS-CoV-2 infection caused a 67% decrease in MCT rate as early as 2 days postinfection (dpi) in hamsters, principally due to 79% diminished airway coverage of motile cilia. Correlating quantitation of physiological, virological, and pathological changes reveals steadily descending infection from the upper airways to lower airways to lung parenchyma within 7 dpi. Our results indicate that functional deficits of the MCT apparatus are a key aspect of COVID-19 pathogenesis, may extend viral retention, and could pose a risk factor for secondary infection. Clinically, monitoring abnormal ciliated cell function may indicate disease progression. Therapies directed toward the MCT apparatus deserve further investigation.


Subject(s)
COVID-19 , Animals , Cricetinae , COVID-19/pathology , Disease Models, Animal , Disease Progression , Lung/diagnostic imaging , Lung/pathology , Mesocricetus , Mucociliary Clearance , SARS-CoV-2 , Subgenomic RNA
3.
bioRxiv ; 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35075457

ABSTRACT

Substantial clinical evidence supports the notion that ciliary function in the airways plays an important role in COVID-19 pathogenesis. Although ciliary damage has been observed in both in vitro and in vivo models, consequent impaired mucociliary transport (MCT) remains unknown for the intact MCT apparatus from an in vivo model of disease. Using golden Syrian hamsters, a common animal model that recapitulates human COVID-19, we quantitatively followed the time course of physiological, virological, and pathological changes upon SARS-CoV-2 infection, as well as the deficiency of the MCT apparatus using micro-optical coherence tomography, a novel method to visualize and simultaneously quantitate multiple aspects of the functional microanatomy of intact airways. Corresponding to progressive weight loss up to 7 days post-infection (dpi), viral detection and histopathological analysis in both the trachea and lung revealed steadily descending infection from the upper airways, as the main target of viral invasion, to lower airways and parenchymal lung, which are likely injured through indirect mechanisms. SARS-CoV-2 infection caused a 67% decrease in MCT rate as early as 2 dpi, largely due to diminished motile ciliation coverage, but not airway surface liquid depth, periciliary liquid depth, or cilia beat frequency of residual motile cilia. Further analysis indicated that the fewer motile cilia combined with abnormal ciliary motion of residual cilia contributed to the delayed MCT. The time course of physiological, virological, and pathological progression suggest that functional deficits of the MCT apparatus predispose to COVID-19 pathogenesis by extending viral retention and may be a risk factor for secondary infection. As a consequence, therapies directed towards the MCT apparatus deserve further investigation as a treatment modality.

SELECTION OF CITATIONS
SEARCH DETAIL
...