Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
CNS Neurosci Ther ; 30(2): e14594, 2024 02.
Article in English | MEDLINE | ID: mdl-38332538

ABSTRACT

BACKGROUND: With the rapidly increasing prevalence of metabolic diseases such as type 2 diabetes mellitus (T2DM), neuronal complications associated with these diseases have resulted in significant burdens on healthcare systems. Meanwhile, effective therapies have remained insufficient. A novel fatty acid called S-9-PAHSA has been reported to provide metabolic benefits in T2DM by regulating glucose metabolism. However, whether S-9-PAHSA has a neuroprotective effect in mouse models of T2DM remains unclear. METHODS: This in vivo study in mice fed a high-fat diet (HFD) for 5 months used fasting blood glucose, glucose tolerance, and insulin tolerance tests to examine the effect of S-9-PAHSA on glucose metabolism. The Morris water maze test was also used to assess the impact of S-9-PAHSA on cognition in the mice, while the neuroprotective effect of S-9-PAHSA was evaluated by measuring the expression of proteins related to apoptosis and oxidative stress. In addition, an in vitro study in PC12 cells assessed apoptosis, oxidative stress, and mitochondrial membrane potential with or without CAIII knockdown to determine the role of CAIII in the neuroprotective effect of S-9-PAHSA. RESULTS: S-9-PAHSA reduced fasting blood glucose levels significantly, increased insulin sensitivity in the HFD mice and also suppressed apoptosis and oxidative stress in the cortex of the mice and PC12 cells in a diabetic setting. By suppressing oxidative stress and apoptosis, S-9-PAHSA protected both neuronal cells and microvascular endothelial cells in in vivo and in vitro diabetic environments. Interestingly, this protective effect of S-9-PAHSA was reduced significantly when CAIII was knocked down in the PC12 cells, suggesting that CAIII has a major role in the neuroprotective effect of S-9-PAHSA. However, overexpression of CAIII did not significantly enhance the protective effect of S-9-PAHSA. CONCLUSION: S-9-PAHSA mediated by CAIII has the potential to exert a neuroprotective effect by suppressing apoptosis and oxidative stress in neuronal cells exposed to diabetic conditions. Furthermore, S-9-PAHSA has the capability to reduce fasting blood glucose and LDL levels and enhance insulin sensitivity in mice fed with HFD.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Neuroprotective Agents , Palmitic Acid , Stearic Acids , Animals , Mice , Rats , Apoptosis , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diet, High-Fat/adverse effects , Disease Models, Animal , Endothelial Cells/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress , Carbonic Anhydrase III/drug effects , Carbonic Anhydrase III/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...