Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; : 133355, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38945711

ABSTRACT

In this work, the step-by-step dip-coating (SBS) method was used to effectively improve the drawback of LBL by reducing the construction of a multilayer polyelectrolyte. Bio-based flame retardants, phytic acid (PA), and chitosan (CS) were further self-assembly on the surface of cotton fabric treated by epichlorohydrin-modified aramid nanofibers (AEP), ionic liquid (IL), and Cu ion. The pure cotton fabric was immersed in each dipping liquid only once, improving fire safety and antibacterial performance. The treated cotton self-extinguished with a 59 mm char length in the vertical flammability test, and the limiting oxygen index (LOI) value increased from 18.5 % to 38.5 %. The result of the cone calorimeter test (CCT) revealed that the fire hazard of flame-retardant cotton noteworthy declined (e.g., ~44.1 % and 55.4 % decline in peak heat release rate (pHRR) and total heat release rate (THR)). Conspicuously, the treated cotton exhibited a remarkably inhibiting effect on E. coli and S. aureus activity. The cotton fabric after flame-retardant finishing exhibited excellent fire safety and antibacterial performance.

2.
J Hazard Mater ; 444(Pt A): 130398, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36402109

ABSTRACT

Frequent petrochemical spill accidents and secondary fire hazards have threatened the ecological environment and environmental safety. The traditional purification technology has the problems of high energy consumption and secondary pollution, which also brings new challenges to spill disposal. Herein, we demonstrate a biomimetic structure-based flame-retardant polyurethane (PU) sponge (FPUF@MOF-LDH@HDTMS) for continuous oil-water separation. Inspired by desert beetle and lotus leaf, the biomimetic micro-nano composite structure was constructed by in-situ growth of metal-organic framework-derived layered double hydroxide (MOF-LDH) on the surface of the PU sponge. After grafting MOF-LDH with hexadecyltrimethoxysilane, FPUF@MOF-LDH@HDTMS showed excellent superhydrophobic/superoleophilic performance (water contact angle=153° and oil contact angle=0°). FPUF@MOF-LDH@HDTMS can easily and quickly adsorb oily liquids suspended/settled in the water thanks to the unique bionic structure. FPUF@MOF-LDH@HDTMS has excellent oil/organic solvents absorption capacity; even after 20 cycles of use still maintains high adsorption capacity. More importantly, the continuous oil-water separation through FPUF@MOF-LDH@HTMS has achieved a separation efficiency of up to 99.1%. In addition, the bionic superhydrophobic sponge has excellent flame retardancy, which reduces the possibility of secondary fire caused by PU sponges. Thus, the biomimetic micro-nano composite structure provides a new design strategy for the more high-performance oil-water separation sponges.


Subject(s)
Fires , Flame Retardants , Metal-Organic Frameworks , Polyurethanes , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...