Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 795: 148899, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34328910

ABSTRACT

Biological nitrogen removal is the most prevalent wastewater nitrogen removal process but nitrification limits the rate of the whole process mainly due to the low efficiency of oxygen transfer. In this study, clean-water oxygenation tests, batch tests, long-term operational tests and metagenomic analyses were applied to assess the effects of micro-nano aeration on nitrification. The oxygen transfer coefficient (KLa), oxygen transfer rate (OTR) and oxygen transfer efficiency (OTE) were determined to be 0.56 min-1, 0.36 kg·m-3·h-1 and 71.43%, respectively during micro-nano-bubble aeration. Impressively, these values were 15 times greater than those of conventional aeration. The results of batch tests and long-term operation experiments found that the ammonia removal rate of micro-nano aeration was 3.2-fold that of conventional aeration. The energy cost for micro-nano aeration was calculated to be 3694.5 mg NH4+-N/kW·h, a 50% energy saving in comparison to conventional aeration. In addition, the nitrite accumulation ratio in the Micro-nano (MN) reactor was 1.5 that of the Conventional (CV) reactor. Metagenomic analysis showed that after long-term operation in micro-nano aeration, the abundances of genes encoding ammonia monooxygenase (amoA) and hydroxylamine oxidoreductase (hao) was more than 8-fold and 4-fold of those in conventional aeration, respectively. The abundance of the gene encoding nitrite oxidoreductase (nxrA) was similar in both reactors. Read taxonomy revealed that abundance of AOB-Nitrosomonas increased significantly when using micro-nano aeration, while abundance of NOB-Nitrospira abundance was similar in both reactors. The results of this study indicated that the micro-nano aeration process will increase the ammonia oxidation performance by enhancing oxygen transfer but was also shown to be beneficial for enhancing partial nitrification by specific enrichment of ammonia oxidizing bacteria. This latter result demonstrates the potential benefits of the micro-nano aeration process as an alternative approach to establishing high-rate partial nitrification.


Subject(s)
Bioreactors , Nitrification , Ammonia , Nitrites , Nitrogen , Nitrosomonas , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...