Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
1.
J Mass Spectrom ; 59(7): e5058, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38842112

ABSTRACT

Analysis of noncovalent interactions between natural products and proteins is important for rapid screening of active ingredients and understanding their pharmacological activities. In this work, the intensity fading MALDI-TOF mass spectrometry (IF-MALDI-MS) method with improved reproducibility was implemented to investigate the binding interactions between saponins from Panax notoginseng and lysozyme. The benchmark IF-MALDI-MS experiment was established using N,N',N″-triacetylchitotriose-lysozyme as a model system. The reproducibility of ion intensities in IF-MALDI-MS was improved by scanning the whole sample deposition with a focused laser beam. The relative standard deviation (RSD) of deposition scanning IF-MALDI-MS is 5.7%. Similar decay trends of the relative intensities of notoginseng saponins against increasing amounts of lysozyme were observed for all six notoginseng saponins. The half-maximal fading concentration (FC50) was calculated to quantitatively characterize the binding affinity of each ligand based on the decay curve. According to the FC50 values obtained, the binding affinities of the six notoginseng saponins were evaluated in the following order: notoginsenoside S > notoginsenoside Fc > ginsenoside Rb1 > ginsenoside Rd > notoginsenoside Ft1 > ginsenoside Rg1. The binding order was in accordance with molecular docking studies, which showed hydrogen bonding might play a key role in stabilizing the binding interaction. Our results demonstrated that deposition scanning IF-MALDI-MS can provide valuable information on the noncovalent interactions between ligands and proteins.


Subject(s)
Muramidase , Panax notoginseng , Saponins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Muramidase/chemistry , Muramidase/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Saponins/chemistry , Saponins/analysis , Saponins/metabolism , Panax notoginseng/chemistry , Protein Binding , Molecular Docking Simulation , Reproducibility of Results , Animals , Trisaccharides
2.
SAGE Open Med ; 12: 20503121241255807, 2024.
Article in English | MEDLINE | ID: mdl-38826828

ABSTRACT

Objective: To observe the efficacy of haploidentcial peripheral blood stem cell transplantation combined with a single unrelated cord blood unit for severe aplastic anemia patients with donor-recipient ABO incompatibility. Methods: This was a retrospective cohort study and data of 57 severe aplastic anemia patients underwent haploidentical stem cell transplantation from August 1, 2018 to February 28, 2022 in the First Affiliated Hospital of Xi'an Jiaotong University was retrospectively analyzed. All patients were divided into two groups, the donor-recipient ABO matched group (bone marrow+peripheral blood group) using haploidentical bone marrow and peripheral blood stem cells as grafts, and donor-recipient ABO mismatched group (cord blood+peripheral blood group), using unrelated cord blood and haploidentical peripheral blood stem cells as grafts. The differences of hematopoietic reconstitution, acute and chronic graft-versus-host disease, Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infection, and overall survival between the two groups were compared. Results: There were 30 cases in cord blood+peripheral blood group and 27 cases in bone marrow+peripheral blood group. One patient in bone marrow+peripheral blood group had primary graft failure, while other patients were successfully implanted. There were no significant differences of neutrophil and platelet recovery rates between two groups. The erythrocyte recovery time of cord blood+peripheral blood group was slower than that of bone marrow+peripheral blood group (p < 0.05). There was no significant difference of the incidence of graft-versus-host disease, CMV, EB virus infection and post-transplant lymphoproliferative disorders between two groups (p > 0.05). The incidence of grade III-IV acute graft-versus-host disease in cord blood+peripheral blood group was higher than that of bone marrow+peripheral blood group (p < 0.05). The incidence of intestinal graft-versus-host disease was higher in minor ABO-mismatched transplantation than that in major ABO-mismatched transplantation (p < 0.05). There was no significant difference of overall survival between two groups (p > 0.05). Conclusion: These findings suggest that haploidentical peripheral blood stem cell transplantation combined with a single cord blood unit may be an alternative option for severe aplastic anemia patients with donor-recipient ABO incompatibility.

3.
Org Lett ; 26(18): 3982-3986, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38690829

ABSTRACT

Described herein is the development of a visible-light-induced photoredox 1,6-enyne reductive cyclization via selective reduction of a triple bond instead of an activated double bond. The selective 1,6-enyne radical cyclization/carbon═carbon double bond cleavage provided a straightforward route to structurally valuable α,ß-unsaturated γ-lactams. TEMPO-trap experiments, control experiments, and DFT calculations have offered evidence supporting the possible catalytic cycle.

4.
Stem Cells Dev ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801165

ABSTRACT

The therapeutic potential of autologous stem cell transplantation for heart repair diminishes in the elderly due to stem cell aging. Rejuvenating aged stem cells to enhance their protective effects on injured cardiomyocytes is crucial for aging patients with heart failure. In this study, we aimed to investigate whether NDNF over-expression improves the protective effect of aged stem cells for injured cardiomyocytes and explore the underlying mechanism. Human bone marrow was collected from both young and old patients, and BMSCs were cultured. Lentivirus expression vectors carrying NDNF genes were used to transfect aged BMSCs. Fatal hypoxia-induced injury in H9C2 cells served as an in vitro ischemia model. The conditioned medium from different BMSC groups was applied to assess the beneficial effects on hypoxia-induced damage in myocardial H9C2 cells. Results revealed that the conditioned medium of NDNF over-expressed old BMSCs increased H9C2 cell viability and reduced oxidative stress and apoptosis levels under fatal hypoxia. NDNF over-expressed old BMSCs exhibited an anti-apoptotic role by up-regulating the anti-apoptotic gene Bcl-2 and down-regulating the pro-apoptotic genes Bax. Additionally, the protective effects were mediated through the elevation of phosphorylated AKT. Our data support the promise of NDNF as a potential target to enhance the protective effects of autologous aged BMSCs on ischemic cardiomyocytes and then improve the curative effects of stem cell for ischemic heart injury in aged patients.

5.
Brain Commun ; 6(3): fcae144, 2024.
Article in English | MEDLINE | ID: mdl-38756537

ABSTRACT

The neuropathological mechanisms underlying the association between sleep duration and mild cognitive impairment remain poorly understood. This population-based study included 2032 dementia-free people (age ≥ 60 years; 55.1% women) derived from participants in the Multimodal Interventions to Delay Dementia and Disability in Rural China; of these, data were available in 841 participants for Alzheimer's plasma biomarkers (e.g. amyloid-ß, total tau and neurofilament light chain), 1044 for serum microvascular biomarkers (e.g. soluble adhesion molecules) and 834 for brain MRI biomarkers (e.g. whiter matter, grey matter, hippocampus, lacunes, enlarged perivascular spaces and white matter hyperintensity WMH). We used electrocardiogram-based cardiopulmonary coupling analysis to measure sleep duration, a neuropsychological test battery to assess cognitive function and the Petersen's criteria to define mild cognitive impairment. Data were analysed with multivariable logistic and general linear models. In the total sample (n = 2032), 510 participants were defined with mild cognitive impairment, including 438 with amnestic mild cognitive impairment and 72 with non-amnestic mild cognitive impairment. Long sleep duration (>8 versus 6-8 h) was significantly associated with increased likelihoods of mild cognitive impairment and non-amnestic mild cognitive impairment and lower scores in global cognition, verbal fluency, attention and executive function (Bonferroni-corrected P < 0.05). In the subsamples, long sleep duration was associated with higher plasma amyloid-ß40 and total tau, a lower amyloid-ß42/amyloid-ß40 ratio and smaller grey matter volume (Bonferroni-corrected P < 0.05). Sleep duration was not significantly associated with serum-soluble adhesion molecules, white matter hyperintensity volume, global enlarged perivascular spaces and lacunes (P > 0.05). Alzheimer's and neurodegenerative pathologies may represent common pathways linking long sleep duration with mild cognitive impairment and low cognition in older adults.

6.
Lupus ; : 9612033241243175, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634475

ABSTRACT

AIM: This study aimed to investigate the expression of H19 and its possible molecular mechanism in systemic lupus erythematosus (SLE). METHODS: The expression of H19 and miR-19b in serum and peripheral blood mononuclear cells (PBMCs) were detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Receiver operator characteristic (ROC) curve was constructed to evaluate the diagnostic value of serum H19 in SLE. Pearson correlation coefficient was used to analyze the correlation between serum levels of H19 and miR-19b. Flow cytometry and Cell counting kit-8 (CCK-8) assay were performed to detect cell apoptosis and viability. The levels of pro-inflammatory and anti-inflammatory factors were measured by enzyme-linked immunosorbent assay (ELISA). Luciferase reporter gene assay was conducted to verify the interaction between H19 and miR-19b. RESULTS: The expression of H19 and miR-19b in SLE group were up-regulated and down-regulated, respectively. Serum H19 has certain clinical diagnostic value in SLE. In in vitro studies, overexpression of H19 can significantly inhibit the viability of PBMCs and promote apoptosis and inflammatory response of PBMCs by interacting with miR-19b. CONCLUSIONS: The expression of H19 is upregulated in patients with SLE and plays a role in cell function and inflammation by targeting miR-19b in PBMCs, which may be one of the pathological mechanisms of SLE.

7.
Poult Sci ; 103(7): 103776, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38688136

ABSTRACT

Chicoric acid (CA) is a natural nutrient found in plants, showcasing diverse biological activities, including anti-inflammatory and antioxidant properties. Despite its valuable properties, CA faces limitations in bioavailability and susceptibility to oxidative breakdown during utilization. Previous research introduced synthesized dihydrocaffeic acid grafted chitosan self-assembled nanomicelles (DA-g-CS), demonstrating its potential to enhance CA absorption. This study aims to investigate the pharmacokinetics, tissue distribution, and antioxidant activity of both CA and DA-g-CS loaded CA (DA-g-CS/CA) in broilers. An IPEC-J2 cell model was established and evaluated to delve deeper into the transport mechanism and antioxidant potential. The in vivo pharmacokinetic analysis in broilers highlighted a substantial difference: the maximum plasma concentration (Cmax) of DA-g-CS/CA exceeded CA by 2.6-fold, yielding a notable increased relative bioavailability to 214%. This evidence underscores the significant enhancement in CA's oral absorption, facilitated by DA-g-CS. The collective evaluation outcomes affirm the successful development of the cell model, indicating its suitability for drug transporter experiments. The findings from the intestinal transit analysis revealed that both CA and DA-g-CS/CA underwent passive entry into IPEC-J2 cells. Notably, the cellular uptake rate of DA-g-CS loaded with CA was significantly amplified, reaching 2.1 times higher than that of CA alone. Intracellular transport mechanisms involved microtubules, lysosomes, and the endoplasmic reticulum, with an additional pathway involving the endoplasmic reticulum observed specifically for DA-g-CS/CA, distinguishing it from CA. Moreover, the results from both in vivo and in vitro antioxidant assessments highlight the potent antioxidant activity of DA-g-CS/CA, showcasing its efficacy in preventing and treating cellular damage induced by oxidative stress. In summary, these findings underscore the significant enhancement of CA's efficacy facilitated by DA-g-CS, establishing a robust theoretical foundation for the prospective application of CA within livestock and poultry farming.

8.
APMIS ; 132(7): 507-514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38644557

ABSTRACT

LncRNAs play an important role in autoimmune diseases. The purpose of this study was to explore the role of lncRNA SNHG1 in systemic lupus erythematosus (SLE), and laid a theoretical foundation for the study of SLE. The basic clinical information of all subjects was first collected for statistical analysis, and SNHG1 expression in the serum of all subjects was detected by RT-qPCR. The value of SNHG1 in the diagnosis of SLE was assessed by ROC. The correlation between SNHG1 and each blood sample index was analyzed by Pearson correlation analysis. The role of SNHG1 in primary peripheral blood mononuclear cells (PBMCs) apoptosis was explored. SNHG1 expression is relatively upregulated in patients with SLE compared to healthy people. SNHG1 expression was positively correlated with SLEDAI score, IgG, CRP, and ESR, and negatively correlated with C3 and C4. ROC indicated that SNHG1 has the potential to assist in the diagnosis of SLE. PBMCs apoptosis in SLE was higher than that in control group, the knockdown and overexpression of SNHG1 could correspondingly inhibit and promote PBMCs apoptosis. SNHG1 has the potential to be a diagnosis marker for SLE and may be involved in regulating PBMCs apoptosis.


Subject(s)
Apoptosis , Biomarkers , Disease Progression , Leukocytes, Mononuclear , Lupus Erythematosus, Systemic , RNA, Long Noncoding , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/blood , Biomarkers/blood , Female , Apoptosis/genetics , Leukocytes, Mononuclear/metabolism , Adult , Male , Middle Aged , Young Adult , ROC Curve
9.
Nat Commun ; 15(1): 2713, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548728

ABSTRACT

DNA methylation is an ideal trait to study the extent of the shared genetic control across ancestries, effectively providing hundreds of thousands of model molecular traits with large QTL effect sizes. We investigate cis DNAm QTLs in three European (n = 3701) and two East Asian (n = 2099) cohorts to quantify the similarities and differences in the genetic architecture across populations. We observe 80,394 associated mQTLs (62.2% of DNAm probes with significant mQTL) to be significant in both ancestries, while 28,925 mQTLs (22.4%) are identified in only a single ancestry. mQTL effect sizes are highly conserved across populations, with differences in mQTL discovery likely due to differences in allele frequency of associated variants and differing linkage disequilibrium between causal variants and assayed SNPs. This study highlights the overall similarity of genetic control across ancestries and the value of ancestral diversity in increasing the power to detect associations and enhancing fine mapping resolution.


Subject(s)
DNA Methylation , East Asian People , Humans , DNA Methylation/genetics , Quantitative Trait Loci/genetics , Gene Expression Regulation , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Genome-Wide Association Study
10.
Appl Environ Microbiol ; 90(3): e0207923, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38349148

ABSTRACT

Anthocyanin cyanidin 3-O-glucoside (C3G) is a natural pigment widely used in food and nutraceutical industries. Its microbial synthesis in Escherichia coli is a promising and efficient way toward large-scale production. The current production titer is low partly due to the accumulation of C3G inside the producing microbes; thus, it is important to explore native transporters responsible for anthocyanin secretion. Currently, there has been only one native E. coli transporter identified with C3G-transporting capability, and its overexpression has a very limited effect on the promotion of extracellular C3G production. In this study, we report the identification and verification of an efficient intrinsic C3G efflux transporter MdtH in E. coli through transcriptomic analysis and genetic/biochemical studies. MdtH could bind C3G with high affinity, and its overexpression increased the extracellular C3G biosynthesis in E. coli by 110%. Our study provides a new regulation target for microbial biosynthesis of C3G and other anthocyanins. IMPORTANCE: Cyanidin 3-O-glucoside (C3G) is a natural colorant with health-promoting activities and is, hence, widely used in food, cosmetic, and nutraceutical industries. Its market supply is currently dependent on extraction from plants. As an alternative, C3G can be produced by the microbe Escherichia coli in a green and sustainable way. However, a large portion of this compound is retained inside the cell of E. coli, thus complicating the purification process and limiting the high-level production. We have identified and verified an efficient native transporter named MdtH in E. coli that can export C3G to the cultivation medium. Overexpression of MdtH could improve extracellular C3G production by 110% without modifications of the metabolic pathway genes or enzymes. This study reveals a new regulation target for C3G production in bacteria and provides guidance to the microbial biosynthesis of related compounds.


Subject(s)
Anthocyanins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Anthocyanins/chemistry , Anthocyanins/metabolism , Glucosides/metabolism , Biological Transport
11.
Int J Genomics ; 2024: 2277956, 2024.
Article in English | MEDLINE | ID: mdl-38410787

ABSTRACT

Wiskott-Aldrich syndrome (WAS) is a rare X-linked recessive genetic disease characterized by clinical symptoms such as eczema, thrombocytopenia with small platelets, immune deficiency, prone to autoimmune diseases, and malignant tumors. This disease is caused by mutations of the WAS gene encoding WASprotein (WASP). The locus and type of mutations of the WAS gene and the expression quantity of WASP were strongly correlated with the clinical manifestations of patients. We found a novel mutation in the WAS gene (c.931 + 5G > C), which affected splicing to produce three abnormal mRNA, resulting in an abnormally truncated WASP. This mutation led to a reduction but not the elimination of the normal WASP population, resulting in causes X-linked thrombocytopenia (XLT) with mild clinical manifestations. Our findings revealed the pathogenic mechanism of this mutation.

12.
Sleep Breath ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374476

ABSTRACT

OBJECTIVE: To investigate the prevalence and associated factors of excessive daytime sleepiness (EDS) among rural-dwelling Chinese older adults. METHODS: We collected data on demographic, epidemiological, and clinical factors via in-person interviews and clinical examinations following a structured questionnaire. The 15-item Geriatric Depression Scale (GDS-15) was used to assess depressive symptoms, the Berlin questionnaire (BQ) to assess obstructive sleep apnea (OSA) risk; and the Epworth Sleepiness Scale (ESS) to assess sleep characteristics. EDS was defined as the total ESS score > 10. RESULTS: This population-based study engaged 4845 participants (age ≥ 65 years, 57.3% female) in the 2018 examination of the Multimodal Interventions to Delay Dementia and Disability in Rural China. The prevalence of EDS was 9.3% in the total sample, 8.3% in females, and 10.6% in males, and the prevalence decreased with advanced age. Logistic regression analysis revealed that EDS was significantly associated with age (multivariable-adjusted odds ratio [OR] = 0.97; 95% confidence interval [CI] 0.95-0.99), female sex (0.53; 0.36-0.77), hypertension (0.68; 0.54-0.85), depressive symptoms (2.68; 2.07-3.46), high OSA risk (2.11; 1.69-2.63), and poor sleep quality (2.12; 1.60-2.82). CONCLUSION: EDS affects nearly one-tenth of rural older adults in China. Older age, female sex, and hypertension were associated with a decreased likelihood of EDS, while depressive symptoms, high OSA risk, and poor sleep quality were correlated with an elevated likelihood of EDS.

13.
Heliyon ; 10(3): e25791, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38356534

ABSTRACT

Introduction: Acute-on-chronic liver failure (ACLF) is a clinical syndrome with high short-term mortality. ACLF has been increasingly studied in recent years; however, a bibliometric analysis of the entire ACLF field has not been conducted. This study assesses current global trends and hotspots in ACLF research. Materials and methods: The core Web of Science database was searched for all ACLF-related publications conducted during 2012-2022. The data included information on the author, country, author keywords, publication year, citation frequency, and references. Microsoft Excel was used to collate the data and calculate percentages. VOSviewer software was used for citation and density visualization analysis. Histogram rendering was performed using GraphPad Prism Version 8.0 and R software was used to supplement the analysis. Result: A total of 1609 ACLF-related articles from 67 different countries were identified. China contributed the most literature, followed by the United States. However, Chinese literature only had the 4th highest number of citations, indicating that cooperation with other countries needs to be strengthened. The Journal of Hepatology had the highest number of ACLF-related citations. Prognosis was one of the most common author keywords, which may highlight current research hotspots. Bacterial infection was a common keyword and was closely related to prognosis. Conclusion: This bibliometric analysis suggests that future research hotspots will focus on the interplay among bacterial infection, organ failure, and prognosis.

14.
Asia Pac J Ophthalmol (Phila) ; 13(1): 100030, 2024.
Article in English | MEDLINE | ID: mdl-38233300

ABSTRACT

PURPOSE: There are major gaps in our knowledge of hereditary ocular conditions in the Asia-Pacific population, which comprises approximately 60% of the world's population. Therefore, a concerted regional effort is urgently needed to close this critical knowledge gap and apply precision medicine technology to improve the quality of lives of these patients in the Asia-Pacific region. DESIGN: Multi-national, multi-center collaborative network. METHODS: The Research Standing Committee of the Asia-Pacific Academy of Ophthalmology and the Asia-Pacific Society of Eye Genetics fostered this research collaboration, which brings together renowned institutions and experts for inherited eye diseases in the Asia-Pacific region. The immediate priority of the network will be inherited retinal diseases (IRDs), where there is a lack of detailed characterization of these conditions and in the number of established registries. RESULTS: The network comprises 55 members from 35 centers, spanning 12 countries and regions, including Australia, China, India, Indonesia, Japan, South Korea, Malaysia, Nepal, Philippines, Singapore, Taiwan, and Thailand. The steering committee comprises ophthalmologists with experience in consortia for eye diseases in the Asia-Pacific region, leading ophthalmologists and vision scientists in the field of IRDs internationally, and ophthalmic geneticists. CONCLUSIONS: The Asia Pacific Inherited Eye Disease (APIED) network aims to (1) improve genotyping capabilities and expertise to increase early and accurate genetic diagnosis of IRDs, (2) harmonise deep phenotyping practices and utilization of ontological terms, and (3) establish high-quality, multi-user, federated disease registries that will facilitate patient care, genetic counseling, and research of IRDs regionally and internationally.


Subject(s)
Developing Countries , Humans , Philippines , China , Thailand , Malaysia
15.
Recent Pat Anticancer Drug Discov ; 19(2): 199-208, 2024.
Article in English | MEDLINE | ID: mdl-38214359

ABSTRACT

BACKGROUND: As a pentacyclic triterpenoid, OA (oleanolic acid) has exhibited antiinflammatory, immunomodulatory and antitumor effects. VEGFR-2 (vascular endothelial cells receptor-2) tyrosine kinase activity could be inhibited by apatinib, a small-molecule antiangiogenic agent. OBJECTIVE: Thus, this study sought to investigate the mechanism underlying the synergistic antitumor activity of combined OA and apatinib patent. METHODS: Through CCK8 (Cell counting kit 8 assay), flow cytometric and western blotting techniques, we conducted in vitro studies on apatinib and OA effects on cell proliferation and apoptosis in H22 cell line. H22 tumor-burdened mice model was established in vivo, while the related signaling pathways were studied via pathological examination, western blotting and qPCR (quantitative polymerase chain reaction). RESULTS: Growth of H22 cells in vitro and in vivo could be inhibited effectively by apatinib and OA. Thus, OA repaired liver function and inhibited oxidative stress induced by apatinib. CONCLUSION: OA can treat apatinib induced liver injury in H22 Tumor-burdened mice by enhancing the suppresssive effect of apatinib on the growth of tumor.


Subject(s)
Liver Neoplasms , Oleanolic Acid , Pyridines , Humans , Animals , Mice , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Cell Line, Tumor , Endothelial Cells/metabolism , Endothelial Cells/pathology , Patents as Topic , Cell Proliferation , Liver Neoplasms/pathology
16.
J Psychiatr Res ; 170: 394-407, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218013

ABSTRACT

BACKGROUND: Problematic use of mobile phones (PMPU) has been described as a serious public health issue. METHODS: This study was a parallel three-arm randomized controlled trial and has completed registration (ClinicalTrials.gov Identifier: NCT05843591). Ninety college students with PMPU were randomly assigned to the aerobic exercise group (AE group, n = 30), the Tai Chi Chuan group (TCC group, n = 30), or the wait-list control group (WLC group, n = 30). At the end of the intervention, stool samples from the study participants were collected for biological analysis based on 16 S rDNA amplicon sequencing technology. The primary outcome was addiction symptoms assessed by the Smartphone Addiction Scale-Short Version (SAS-SV). The secondary outcomes are emotional symptoms, physical symptoms, and flora species. RESULTS: Compared with the WLC group, the AE and TCC groups showed reductions in PMPU levels, physical and mental fatigue, but there was no difference between the two groups. Moreover, the effect of increasing self-esteem embodied in the TCC group was not present in the AE group. Compared to the WLC group, the relative abundance of Bacteroidaceae and Bacteroides were lower in the AE group, while the relative abundance of Erysipelotrichaceae and Alistipes were lower in the TCC group. And the relative abundance of Bacteroidaceae, Bacteroides, and Alistipes were significantly and negatively correlated with the decline in PMPU scores. CONCLUSION: AE or TCC is an effective, safe and efficient intervention for college students with PMPU, providing some physiological and psychological benefits and having some impact on their intestinal flora.


Subject(s)
Cell Phone Use , Gastrointestinal Microbiome , Tai Ji , Humans , Exercise , Students/psychology
17.
Gene ; 896: 148038, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38036077

ABSTRACT

BACKGROUND: Hemophilia A is caused by a deficiency of coagulation factor VIII in the body due to a defect in the F8 gene. The emergence of CRISPR/Cas9 gene editing technology will make it possible to alter the expression of the F8 gene in hemophiliacs, while achieving a potential cure for the disease. METHODS: Initially, we identified high-activity variants of FVIII and constructed donor plasmids using enzymatic digestion and ligation techniques. Subsequently, the donor plasmids were co-transfected with sgRNA-Cas9 protein into mouse Neuro-2a cells, followed by flow cytometry-based cell sorting and puromycin selection. Finally, BDD-hF8 targeted to knock-in the mROSA26 genomic locus was identified and validated for FVIII expression. RESULTS: We identified the p18T-BDD-F8-V3 variant with high FVIII activity and detected the strongest pX458-mROSA26-int1-sgRNA1 targeted cleavage ability and no cleavage events were found at potential off-target sites. Targeted knock-in of BDD-hF8 cDNA at the mROSA26 locus was achieved based on both HDR/NHEJ gene repair approaches, and high level and stable FVIII expression was obtained, successfully realizing gene editing in vitro. CONCLUSIONS: Knock-in of exogenous genes based on the CRISPR/Cas9 system targeting genomic loci is promising for the research and treatment of a variety of single-gene diseases.


Subject(s)
CRISPR-Cas Systems , Factor VIII , Hemophilia A , Animals , Mice , CRISPR-Associated Protein 9/genetics , Gene Editing/methods , Hemophilia A/genetics , Hemophilia A/therapy , RNA, Guide, CRISPR-Cas Systems , Factor VIII/biosynthesis , Factor VIII/genetics
18.
J Ethnopharmacol ; 321: 117462, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37981117

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In the ancient book "Shen Nong's Herbal Classic," Panax ginseng CA Mey was believed to have multiple benefits, including calming nerves, improving cognitive function, and promoting longevity. Ginsenosides are the main active ingredients of ginseng. Ginsenoside RK3 (RK3), a rare ginsenoside extracted from ginseng, displays strong pharmacological potential. However, its effect on neurogenesis remains insufficiently investigated. AIM OF THE STUDY: This study aims to investigate whether RK3 improves learning and memory by promoting neurogenesis, and to explore the mechanism of RK3 action. MATERIALS AND METHODS: The therapeutic effect of RK3 on learning and memory was determined by the Morris water maze (MWM) and novel object recognition test (NORT). The pathogenesis and protective effect of RK3 on primary neurons and animal models were detected by immunofluorescence and western blotting. Protein expression of cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway was detected by western blotting. RESULTS: Our results showed that RK3 treatment significantly improved cognitive function in APPswe/PSEN1dE9 (APP/PS1) mice and C57BL/6 (C57) mice. RK3 promotes neurogenesis and synaptogenesis in the mouse hippocampus. In vitro, RK3 prevents Aß-induced injury in primary cultured neurons and promotes the proliferation of PC12 as well as the expression of synapse-associated proteins. Mechanically, the positve role of RK3 on neurogenesis was combined with the activation of CREB/BDNF pathway. Inhibition of CREB/BDNF pathway attenuated the effect of RK3. CONCLUSION: In conclusion, this study demonstrated that RK3 promotes learning and cognition in APP/PS1 and C57 mice by promoting neurogenesis and synaptogenesis through the CREB/BDNF signaling pathway. Therefore, RK3 is expected to be further developed into a potential drug candidate for the treatment of Alzheimer's disease (AD).


Subject(s)
Alzheimer Disease , Ginsenosides , Mice , Animals , Alzheimer Disease/pathology , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Ginsenosides/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Mice, Inbred C57BL , Neurogenesis , Disease Models, Animal , Hippocampus
19.
Patient Prefer Adherence ; 17: 3195-3204, 2023.
Article in English | MEDLINE | ID: mdl-38090331

ABSTRACT

Background: Advanced colorectal adenomas are at a risk of malignant transformation following endoscopic resection, and colonoscopic monitoring interval after polypectomy have been widely used. This study aims to investigate the prevailing state of compliance with postoperative colonoscopic surveillance among patients with advanced colorectal adenomas and its' influencing factors at Affiliated Hospital of Jiangnan University between November 2020 and April 2021. Methods: A retrospective analysis was conducted on patients who underwent endoscopic treatment for ACA at Affiliated Hospital of Jiangnan University from November 2020 to April 2021. Compliance with postoperative colonoscopic surveillance was assessed based on established guidelines. Factors such as sociodemographic features, medical histories, and health beliefs were analyzed to determine their influence on compliance. Univariate analysis, survival analysis, and multi-factor Cox regression analysis were used for statistical evaluation. Results: A total of 511 patients were included in the study. The compliance rate was found to be 43.2%. The univariate analysis indicated that factors such as gender, education level, work status, type of health insurance, place of residence, marital status, type of consultation, presence of gastrointestinal symptoms, number of polyps, and the maximum diameter of polyps significantly affected compliance. Multi-factor Cox regression analysis revealed that female gender, absence of gastrointestinal symptoms, outpatient endoscopic treatment, and solitary polyps were independent factors influencing compliance. Reasons for poor compliance included underestimating the severity of the disease, fear of colonoscopy, and procedural complexities. Conclusion: Patients with advanced colorectal adenomas had poor compliance with postoperative colonoscopy monitoring. Tailored health education programs should be designed, targeting women, outpatients undergoing endoscopic procedures, and patients with solitary polyps to enhance their compliance with colonoscopy monitoring.

20.
J Fungi (Basel) ; 9(10)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37888283

ABSTRACT

Pichia pastoris is the most widely used microorganism for the production of secreted industrial proteins and therapeutic proteins. Recently, this yeast has been repurposed as a cell factory for the production of chemicals and natural products. In this review, the general physiological properties of P. pastoris are summarized and the readily available genetic tools and elements are described, including strains, expression vectors, promoters, gene editing technology mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, and adaptive laboratory evolution. Moreover, the recent achievements in P. pastoris-based biosynthesis of proteins, natural products, and other compounds are highlighted. The existing issues and possible solutions are also discussed for the construction of efficient P. pastoris cell factories.

SELECTION OF CITATIONS
SEARCH DETAIL
...