Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(11): 3746-51, 2016 Nov.
Article in English | MEDLINE | ID: mdl-30226708

ABSTRACT

Distinguishing the rare spectra from the majority of stellar spectra is one of quite important issues in astronomy. As the size of the rare spectra is much smaller than the majority of the spectra, many traditional classifiers can't work effectively because they only focus on the classification accuracy and have not paid enough attentions on the rare spectra. In view of this, the relationship between the decision tree and mutual information is discussed on the basis of summarizing the traditional classifiers, and the cost-free decision tree based on mutual information is proposed in this paper to improve the performance of distinguishing the rare spectra. In the experiment, we investigate the performance of the proposed method on the K-type, F-type, G-type, M-type datasets from Sloan Digital Sky Survey (SDSS), Data Release 8. It can be concluded that the proposed method can complete the rare spectra distinguishing task compared with several traditional classifiers.

2.
Virol J ; 12: 119, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26246133

ABSTRACT

BACKGROUND: Newcastle disease (ND) is a devastating worldwide disease of poultry characterized by increased respiration, circulatory disturbances, hemorrhagic enteritis, and nervous signs. Sequence analysis shows several amino acid residue substitutions at neutralizing epitopes on the F and HN proteins of recent Shaanxi strains. Both Cross protection and cross serum neutralization tests revealed that the traditional vaccine strains were unable to provide full protection for the flocks. METHODS: To better understand the epidemiology of Newcastle disease outbreak, a portion of the F gene and the full-length HN gene were amplified from Shaanxi isolates by reverse transcription-polymerase chain reaction (RT-PCR) and then conducted sequence and phylogenetic analyzes. In pathogenicity analysis, both high intra-cerebral pathogenicity index (ICPI) and mean death time (MDT) tests of chicken embryo were carried out. Furthermore, a cross-protection experiment in which specific-pathogen-free chickens vaccinated with a LaSota vaccine strain were challenged by the recent Shaanxi strain was also performed. RESULTS: Nine Newcastle disease (ND) virus (NDV) isolates which were recovered from ND outbreaks in chicken flocks in China were genotypically and pathotypically characterized. Amino acid sequence analysis revealed that all the recent Shaanxi-isolated NDVs have (112)R-R-Q-K-R-F(117) for the C-terminus of the F2 protein and exhibit high ICPI and MDT of chicken embryos, suggesting that they were all classified as velogenic type of NDVs. Phylogenetic analysis of these isolates showed that they belong to subgenotype VIId that have been implicated in the recent outbreaks in northwestern China. The percentage of amino acid sequence identity of F protein between recent Shaanxi stains and five vaccine strains was in the range of 81.9 %-88.1 %, while the percentage of amino acid sequence identity of HN protein between recent Shaanxi strains and vaccine strains was in the range of 87.4 %-91.2 %. Furthermore, a number of amino acid residue substitutions at neutralizing epitopes on the F and HN proteins of these isolates were observed, which may lead to the change of antibody recognition and neutralization capacity. A cross-protection experiment indicated that specific-pathogen-free chickens vaccinated with a LaSota vaccine strain was not capable of providing full protection for the flocks that were challenged by the recent Shaanxi strain. CONCLUSIONS: Taken together, our findings reveal that recent Shannxi NDVstrains exhibit antigenic variations that could be responsible for recent outbreaks of NDVs in northwestern China.


Subject(s)
Communicable Diseases, Emerging , Newcastle Disease/epidemiology , Newcastle Disease/virology , Newcastle disease virus/classification , Newcastle disease virus/genetics , Amino Acid Sequence , Animals , Base Sequence , Chickens , China/epidemiology , Cross Reactions , Epitopes/immunology , HN Protein/genetics , HN Protein/immunology , Hemagglutination Inhibition Tests , Molecular Sequence Data , Neutralization Tests , Newcastle disease virus/isolation & purification , Phylogeny , Sequence Analysis, DNA , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics , Viral Vaccines/immunology , Virus Shedding
3.
Mol Cell Probes ; 28(5-6): 251-4, 2014.
Article in English | MEDLINE | ID: mdl-24941369

ABSTRACT

The commonest ways of diagnosing brucellosis in animals include the Rose-Bengal plate agglutination test, the buffered plate agglutination test (BPA), the slide agglutination test, the complement fixation test, and the indirect enzyme linked immunosorbent assay (I-ELISA). However, these methods cannot discriminate the Brucella vaccine strain (Brucella suis strain 2; B. suis S2) from naturally acquired virulent strains. Of the six common Brucella species, Brucella melitensis, Brucella abortus, and B. suis are the commonest species occurring in China. To develop an ELISA assay that can differentiate between cows inoculated with B. suis S2 and naturally infected with B. abortus and B. melitensis, genomic sequences from six Brucella spp. (B. melitensis, B. abortus, B. suis, Brucella canis, Brucella neotomae and Brucella ovis) were compared using Basic Local Alignment Search Tool software. One particular gene, the repA-related gene, was found to be a marker that can differentiate B. suis from B. abortus and B. melitensis. The repA-related gene of B. suis was PCR amplified and subcloned into the pET-32a vector. Expressed repA-related protein was purified and used as an antigen. The repA-based ELISA was optimized and used as specific tests. In the present study, serum from animals inoculated with the B. suis S2 vaccine strain had positive repA-based ELISA results. In contrast, the test-positive reference sera against B. abortus and B. melitensis had negative repA-based ELISA results. The concordance rate between B. abortus antibody-negative (based on the repA-based ELISA) and the Brucella gene-positive (based on the 'Bruce ladder' multiplex PCR) was 100%. Therefore, the findings suggest that the repA-based ELISA is a useful tool for differentiating cows vaccinated with the B. suis S2 and naturally infected with B. abortus and B. melitensis.


Subject(s)
Bacterial Proteins/immunology , Brucella abortus/immunology , Brucella melitensis/immunology , Brucella suis/immunology , Enzyme-Linked Immunosorbent Assay/methods , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Blotting, Western , Brucella abortus/genetics , Brucella abortus/metabolism , Brucella melitensis/genetics , Brucella melitensis/metabolism , Brucella suis/genetics , Brucella suis/metabolism , Brucellosis/immunology , Brucellosis/microbiology , Brucellosis/prevention & control , Cattle , Species Specificity
4.
Genome Announc ; 1(3)2013 May 30.
Article in English | MEDLINE | ID: mdl-23723395

ABSTRACT

The complete genomic sequence of a new H9N2 avian influenza virus (AIV), isolated in northwestern China, was determined. Sequence and phylogenetic analyses based on the sequences of eight genomic segments revealed that the isolate is phylogenetically related to the Y280-like sublineage.

5.
Genome Announc ; 1(3)2013 May 09.
Article in English | MEDLINE | ID: mdl-23661479

ABSTRACT

The complete genome sequence of a newly emerging Newcastle disease virus, isolated in China, was determined. A phylogenetic analysis based on the F gene revealed that the isolate is phylogenetically related to Newcastle disease virus genotype VIId. Sequence analysis indicated that amino acid residue substitutions occur at neutralizing epitopes on the hemagglutinin-neuraminidase (HN) protein.

6.
Genome Announc ; 1(1)2013 Jan.
Article in English | MEDLINE | ID: mdl-23405304

ABSTRACT

Very little is known about swine influenza in northwestern China. Here, we report the complete genomic sequences of six avian-like H1N1 swine influenza viruses (SIVs) isolated in pigs in northwestern China. Phylogenetic analyses of the sequences of eight genomic segments demonstrated that they are avian-like H1N1 SIVs.

SELECTION OF CITATIONS
SEARCH DETAIL
...