Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(6): e2307726, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37775103

ABSTRACT

Diseases in pregnancy endanger millions of fetuses worldwide every year. The onset of these diseases can be early warned by the dynamic abnormalities of biochemicals in amniotic fluid, thus requiring real-time monitoring. However, when continuously penetrated by detection devices, the amnion is prone to loss of robustness and rupture, which is difficult to regenerate. Here, an interface-stabilized fiber sensor is presented for real-time monitoring of biochemical dynamics in amniotic fluid during pregnancy. The sensor is seamlessly integrated into the amnion through tissue adhesion, amniotic regeneration, and uniform stress distribution, posing no risk to the amniotic fluid environment. The sensor demonstrates a response performance of less than 0.3% fluctuation under complex dynamic conditions and an accuracy of more than 98% from the second to the third trimester. By applying it to early warning of diseases such as intrauterine hypoxia, intrauterine infection, and fetal growth restriction, fetal survival increases to 95% with timely intervention.


Subject(s)
Amnion , Amniotic Fluid , Pregnancy , Female , Humans
2.
Adv Mater ; 35(45): e2304141, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37478834

ABSTRACT

Implantable batteries are urgently needed as a power source to meet the demands of the next generation of biomedical electronic devices. However, existing implantable batteries suffer from unsatisfactory energy density, hindering the miniaturization of these devices. Here, a mitochondrion-inspired magnesium-oxygen biobattery that achieves both high energy density and biocompatibility in vivo is reported. The resulting biobattery exhibits a recorded energy density of 2517 Wh L-1 /1491 Wh kg-1 based on the total volume/mass of the device in vivo, which is ≈2.5 times higher than the current state-of-the-art, and can adapt to different environments for stable discharges. The volume of the magnesium-oxygen biobattery can be as thin as 0.015 mm3 and can be scaled up to 400 times larger without reducing the energy density. Additionally, it shows a stable biobattery/tissue interface, significantly reducing foreign body reactions. This work presents an effective strategy for the development of high-performance implantable batteries.


Subject(s)
Bioelectric Energy Sources , Magnesium , Oxygen , Electricity , Prostheses and Implants
3.
Adv Mater ; 35(32): e2302997, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37159396

ABSTRACT

Electrical stimulation is a promising strategy for treating neural diseases. However, current energy suppliers cannot provide effective power for in situ electrical stimulation. Here, an implantable tubular zinc-oxygen battery is reported as the power source for in situ electrical stimulation during the neural repair. The battery exhibited a high volumetric energy density of 231.4 mWh cm-3 based on the entire anode and cathode in vivo. Due to its superior electrochemical properties and biosafety, the battery can be directly wrapped around the nerve to provide in situ electrical stimulation with a minimal size of 0.86 mm3 . The cell and animal experiments demonstrated that the zinc-oxygen battery-based nerve tissue engineering conduit effectively promoted regeneration of the injured long-segment sciatic nerve, proving its promising applications for powering implantable neural electronics in the future.


Subject(s)
Oxygen , Zinc , Animals , Zinc/chemistry , Electric Power Supplies , Prostheses and Implants , Electric Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...