Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4587, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811526

ABSTRACT

A comprehensive understanding of the transient characteristics in solid oxide cells (SOCs) is crucial for advancing SOC technology in renewable energy storage and conversion. However, general formulas describing the relationship between SOC transients and multiple parameters remain elusive. Through comprehensive numerical analysis, we find that the thermal and gaseous response times of SOCs upon rapid electrical variations are on the order of two characteristic times (τh and τm), respectively. The gaseous response time is approximately 1τm, and the thermal response time aligns with roughly 2τh. These characteristic times represent the overall heat and mass transfer rates within the cell, and their mathematical relationships with various SOC design and operating parameters are revealed. Validation of τh and τm is achieved through comparison with an in-house experiment and existing literature data, achieving the same order of magnitude for a wide range of electrochemical cells, showcasing their potential use for characterizing transient behaviors in a wide range of electrochemical cells. Moreover, two examples are presented to demonstrate how these characteristic times can streamline SOC design and control without the need for complex numerical simulations, thus offering valuable insights and tools for enhancing the efficiency and durability of electrochemical cells.

2.
Heliyon ; 9(8): e19257, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37664710

ABSTRACT

To reveal the breakdown mechanism of dry hot rock (HDR) induced by liquid nitrogen (LN) fracturing, the laboratory tests were performed on high temperature granite using specialized apparatus. The breakdown pressure and fracture morphology of high temperature granites subjected to different heating temperatures and thermal treatments were analyzed. The results showed that the breakdown pressure of granite decreased with heating temperature increasing. As the heating temperature increased from 25 °C to 300 °C, the breakdown pressure of high temperature granite decreased by 40.63%. In addition, the failure mode mainly presented in the form of tensile fractures, which developed into bi-wing fractures along the hole axis. For heating temperature higher than 220 °C, the high temperature granite presented an increase in fracture complexity with the increased heating temperature. After pre-cooled with LN, the breakdown pressure was lowered and the fracture complexity was enhanced. For example, the breakdown pressure of LN-treated sample was 4.61%-27.70% lower than heated sample. Under cryogenic conditions induced by LN, the failure mode mainly presented in the form of randomly distributed tiny cracks and holes, which made the breakdown pressure decreased by 8.67%-59.46%. LN fracturing could cause multiple cracking effects including thermal fracturing (i.e., thermal shock, cryogenic damage and cryogenic cracking) and pressure-induced fracturing on HDR. Importantly, the thermal fracturing effect could reduce the breakdown pressure and improve the fracture complexity.

SELECTION OF CITATIONS
SEARCH DETAIL
...