Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 13(1): 14107, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37644042

ABSTRACT

Images captured in low light conditions suffer from low visibility, blurred details and strong noise, resulting in unpleasant visual appearance and poor performance of high level visual tasks. To address these problems, existing approaches have attempted to enhance the visibility of low-light images using convolutional neural networks (CNN). However, due to the insufficient consideration of the characteristics of the information of different frequency layers in the image, most of them yield blurry details and amplified noise. In this work, to fully extract and utilize these information, we proposed a novel Adaptive Frequency Decomposition Network (AFDNet) for low-light image enhancement. An Adaptive Frequency Decomposition (AFD) module is designed to adaptively extract low and high frequency information of different granularities. Specifically, the low-frequency information is employed for contrast enhancement and noise suppression in low-scale space and high-frequency information is for detail restoration in high-scale space. Meanwhile, a new frequency loss function are proposed to guarantee AFDNet's recovery capability for different frequency information. Extensive experiments on various publicly available datasets show that AFDNet outperforms the existing state-of-the-art methods both quantitatively and visually. In addition, our results showed that the performance of the face detection can be effectively improved by using AFDNet as pre-processing.

2.
Sci Rep ; 13(1): 5359, 2023 04 01.
Article in English | MEDLINE | ID: mdl-37005476

ABSTRACT

Coronavirus 2019 (COVID-19) is a new acute respiratory disease that has spread rapidly throughout the world. This paper proposes a novel deep learning network based on ResNet-50 merged transformer named RMT-Net. On the backbone of ResNet-50, it uses Transformer to capture long-distance feature information, adopts convolutional neural networks and depth-wise convolution to obtain local features, reduce the computational cost and acceleration the detection process. The RMT-Net includes four stage blocks to realize the feature extraction of different receptive fields. In the first three stages, the global self-attention method is adopted to capture the important feature information and construct the relationship between tokens. In the fourth stage, the residual blocks are used to extract the details of feature. Finally, a global average pooling layer and a fully connected layer perform classification tasks. Training, verification and testing are carried out on self-built datasets. The RMT-Net model is compared with ResNet-50, VGGNet-16, i-CapsNet and MGMADS-3. The experimental results show that the RMT-Net model has a Test_ acc of 97.65% on the X-ray image dataset, 99.12% on the CT image dataset, which both higher than the other four models. The size of RMT-Net model is only 38.5 M, and the detection speed of X-ray image and CT image is 5.46 ms and 4.12 ms per image, respectively. It is proved that the model can detect and classify COVID-19 with higher accuracy and efficiency.


Subject(s)
COVID-19 , Delayed Emergence from Anesthesia , Humans , COVID-19/diagnostic imaging , Algorithms , Neural Networks, Computer , Acceleration , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL