Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Cell Signal ; 120: 111227, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38744388

ABSTRACT

PURPOSE: Pcancreatic cancer (PC) is a common tumor of the digestive tract with an insidious onset and high malignancy potential. Currently, surgery is the only effective treatment modality. Therefore, it is crucial to discover new targeted therapeutic modalities. We studied whether transgelin 2 (TAGLN2) targeted control of actin-related protein 2/3 complex subunit 5 (ARPC5)-mediated activation of the MEK/ERK signaling pathway to Influences the proliferation, invasion, and metastasis of pancreatic cancer cells. METHODS: The effects of TAGLN2 overexpression and knockdown on the proliferative viability and invasive metastatic ability of pancreatic cancer cells were verified through in vitro and in vivo assays via constructing a stable lentiviral transfection of human pancreatic cancer cell lines PANC-1 and SW1990. Bioinformatics analysis was used to predict the relationship between TAGLN2 and ARPC5. These findings were subsequently verified through protein profiling, immunofluorescence (IF), and coimmunoprecipitation (CO-IP) assays. In vitro experiments were also conducted to confirm the effect of TAGLN2 modulation on ARPC5 expression, which subsequently affects the proliferation and invasive metastatic ability of pancreatic cancer cells. The study analyzed the relationship between TAGLN2 and the MEK/ERK signaling pathway through bioinformatics and in vitro experiments with the MEK signaling pathway inhibitor U0126. RESULTS: TAGLN2 is expressed at high levels in pancreatic cancer cell lines, and its expression is positively correlated with poor prognosis of pancreatic cancer. ARPC5 is a direct target of TAGLN2 and is associated with the MEK/ERK signaling pathway. In vivo and ex vivo experiments confirmed that overexpression of TAGLN2 promoted the proliferation, invasion, and metastasis of pancreatic cancer cells, and silencing ARPC5 reversed these effect. CONCLUSION: Our research revealed that TAGLN2 protein binds to ARPC5 protein and contributes to increased ARPC5 expression and activation of the MEK/ERK signaling pathway. This activation promotes pancreatic cancer cell growth, infiltration, and spread. Hence, TAGLN2 is a potential viable therapeutic target in pancreatic cancer and represents a novel therapeutic approach.


Subject(s)
Cell Proliferation , MAP Kinase Signaling System , Microfilament Proteins , Muscle Proteins , Neoplasm Invasiveness , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Cell Line, Tumor , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Animals , Muscle Proteins/metabolism , Muscle Proteins/genetics , Mice, Nude , Cell Movement , Mice , Neoplasm Metastasis , Gene Expression Regulation, Neoplastic , Mice, Inbred BALB C
2.
Int J Biol Macromol ; 267(Pt 1): 131485, 2024 May.
Article in English | MEDLINE | ID: mdl-38604429

ABSTRACT

Global seafood consumption is estimated at 156 million tons annually, with an economic loss of >25 billion euros annually due to marine fish spoilage. In contrast to traditional smart packaging which can only roughly estimate food freshness, an intelligent platform integrating machine learning and smart aerogel can accurately predict remaining shelf life in food products, reducing economic losses and food waste. In this study, we prepared aerogels based on anthocyanin complexes that exhibited excellent environmental responsiveness, high porosity, high color-rendering properties, high biocompatibility, high stability, and irreversibility. The aerogel showed excellent indication properties for rainbow trout and proved suitable for fish storage environments. Among the four machine learning models, the radial basis function neural network and backpropagation network optimized by genetic algorithm demonstrated excellent monitoring performance. Also, the two-channel dataset provided more comprehensive information and superior descriptive capability. The three-layer structure of the monitoring platform provided a new paradigm for intelligent and sophisticated food packaging. The results of the study might be of great significance to the food industry and sustainable development.


Subject(s)
Alginates , Anthocyanins , Colorimetry , Food Packaging , Gels , Anthocyanins/chemistry , Food Packaging/methods , Alginates/chemistry , Gels/chemistry , Colorimetry/methods , Animals , Porosity , Seafood/analysis , Oncorhynchus mykiss , Machine Learning
3.
Food Chem ; 450: 139230, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38626713

ABSTRACT

At least 10 million tons of seafood products are spoiled or damaged during transportation or storage every year worldwide. Monitoring the freshness of seafood in real time has become especially important. In this study, four machine learning algorithms were used for the first time to develop a multi-objective model that can simultaneously predict the shelf-life of five marine fish species at multiple storage temperatures using 14 features such as species, temperature, total viable count, K-value, total volatile basic­nitrogen, sensory and E-nose-GC-Ms/Ms. as inputs. Among them, the radial basis function model performed the best, and the absolute errors of all test samples were <0.5. With the optimal model as the base layer, a real-time prediction platform was developed to meet the needs of practical applications. This study successfully realized multi-objective real-time prediction with accurate prediction results, providing scientific basis and technical support for food safety and quality.


Subject(s)
Fishes , Food Storage , Machine Learning , Seafood , Animals , Seafood/analysis , Gas Chromatography-Mass Spectrometry , Temperature , Electronic Nose
4.
J Cancer Res Clin Oncol ; 150(3): 127, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483604

ABSTRACT

PURPOSE: Pancreatic cancer (PC) is a highly malignant tumor that poses a severe threat to human health. Brain glycogen phosphorylase (PYGB) breaks down glycogen and provides an energy source for tumor cells. Although PYGB has been reported in several tumors, its role in PC remains unclear. METHODS: We constructed a risk diagnostic model of PC-related genes by WGCNA and LASSO regression and found PYGB, an essential gene in PC. Then, we explored the pro-carcinogenic role of PYGB in PC by in vivo and in vitro experiments. RESULTS: We found that PYGB, SCL2A1, and SLC16A3 had a significant effect on the diagnosis and prognosis of PC, but PYGB had the most significant effect on the prognosis. Pan-cancer analysis showed that PYGB was highly expressed in most of the tumors but had the highest correlation with PC. In TCGA and GEO databases, we found that PYGB was highly expressed in PC tissues and correlated with PC's prognostic and pathological features. Through in vivo and in vitro experiments, we found that high expression of PYGB promoted the proliferation, invasion, and metastasis of PC cells. Through enrichment analysis, we found that PYGB is associated with several key cell biological processes and signaling pathways. In experiments, we validated that the MAPK/ERK pathway is involved in the pro-tumorigenic mechanism of PYGB in PC. CONCLUSION: Our results suggest that PYGB promotes PC cell proliferation, invasion, and metastasis, leading to poor patient prognosis. PYGB gene may be a novel diagnostic biomarker and gene therapy target for PC.


Subject(s)
Pancreatic Neoplasms , Humans , Biomarkers , Glycogen Phosphorylase, Brain Form/genetics , Glycogen Phosphorylase, Brain Form/metabolism , MAP Kinase Signaling System/genetics , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Prognosis , Signal Transduction/genetics
5.
J Exp Clin Cancer Res ; 43(1): 91, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528516

ABSTRACT

BACKGROUND: Pancreatic cancer (PC) is a highly malignant gastrointestinal tumor, which is characterized by difficulties in early diagnosis, early metastasis, limited therapeutic response and a grim prognosis. Therefore, it is imperative to explore potential therapeutic targets for PC. Currently, although the involvement of the Pellino E3 Ubiquitin Protein Ligase 1 (PELI1) in the human growth of some malignant tumors has been demonstrated, its association with PC remains uncertain. METHODS: Bioinformatics, qRT-PCR, Western blot and IHC were used to detect the expression of PELI1 in pancreas or PC tissues and cells at mRNA and protein levels. The effects of PELI1 on the proliferation and metastatic ability of pancreatic cancer in vitro and in vivo were investigated using CCK8, cloning formation, EdU, flow cytometry, IHC, Transwell assay, wound healing, nude mice subcutaneous tumorigenesis and intrasplenic injection to construct a liver metastasis model. The interactions of PELI1 with proteins as well as the main functions and pathways were investigated by protein profiling, Co-IP, GST-pull down, Immunofluorescence techniques, immunohistochemical co-localization and enrichment analysis. The rescue experiment verified the above experimental results. RESULTS: The mRNA and protein expression levels of PELI1 in PC tissues were upregulated and were associated with poor prognosis of patients, in vitro and in vivo experiments confirmed that PELI1 can affect the proliferation and metastatic ability of PC cells. Co-IP, GST-pull down, and other experiments found that PELI1 interacted with Ribosomal Protein S3 (RPS3) through the FHA structural domain and promoted the polyubiquitination of RPS3 in the K48 chain, thereby activates the PI3K/Akt/GSK3ß signaling pathway. Moreover, ubiquitinated degradation of RPS3 further reduces Tumor Protein P53 (p53) protein stability and increases p53 degradation by MDM2 Proto-Oncogene (MDM2). CONCLUSION: PELI1 is overexpressed in PC, which increased ubiquitination of RPS3 proteins and activates the PI3K/Akt/GSK3ß signaling pathway, as well as reduces the protective effect of RPS3 on p53 and promotes the degradation of the p53 protein, which facilitates the progression of PC and leads to a poor prognosis for patients. Therefore, PELI1 is a potential target for the treatment of PC.


Subject(s)
Pancreatic Neoplasms , Ubiquitin-Protein Ligases , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Glycogen Synthase Kinase 3 beta/metabolism , Mice, Nude , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
6.
FASEB J ; 38(3): e23453, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38318639

ABSTRACT

During early development, both genome-wide epigenetic reprogramming and metabolic remodeling are hallmark changes of normal embryogenesis. However, little is known about their relationship and developmental functions during the preimplantation window, which is essential for the acquisition of totipotency and pluripotency. Herein, we reported that glutathione (GSH), a ubiquitous intracellular protective antioxidant that maintains mitochondrial function and redox homeostasis, plays a critical role in safeguarding postfertilization DNA demethylation and is essential for establishing developmental potential in preimplantation embryos. By profiling mitochondria-related transcriptome that coupled with different pluripotency, we found GSH is a potential marker that is tightly correlated with full pluripotency, and its beneficial effect on prompting developmental potential was functionally conformed using in vitro fertilized mouse and bovine embryos as the model. Mechanistic study based on preimplantation embryos and embryonic stem cells further revealed that GSH prompts the acquisition of totipotency and pluripotency by facilitating ten-eleven-translocation (TET)-dependent DNA demethylation, and ascorbic acid (AsA)-GSH cycle is implicated in the process. In addition, we also reported that GSH serves as an oviductal paracrine factor that supports development potential of preimplantation embryos. Thus, our results not only advance the current knowledge of functional links between epigenetic reprogramming and metabolic remodeling during preimplantation development but also provided a promising approach for improving current in vitro culture system for assisted reproductive technology.


Subject(s)
DNA Demethylation , DNA Methylation , Animals , Cattle , Mice , Blastocyst/metabolism , Embryonic Stem Cells/metabolism , Glutathione/metabolism , Embryonic Development/genetics
7.
Food Chem ; 442: 138615, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38309242

ABSTRACT

Rice gluten, as the hydrophobic protein, exhibits restricted application value in hydrophilic food, which may be enhanced through interaction with soybean 11S globulin, characterized by favorable functional properties. This study aims at revealing their interaction mechanism via multi-spectroscopy and molecular dynamics simulation. The formation and structural change of rice glutelin-soybean 11S globulin complexes were detected using fluorescence, ultra-violet and circular dichroism spectra. The addition of 11S globulin increased the contents of α-helix, ß-turn and random coil, but decreased ß-sheet content, and the change in secondary structure was correlated with particle size. Moreover, exposure of hydrophobic groups and formation of disulfide bonds occurred in the complexes. Molecular dynamics simulation verified these experimental results through analyses of root mean square deviation and fluctuation, hydrogen bond, secondary structure, and binding free energy analysis. This study contributes to expounding the interaction mechanism of protein and protein from the molecular level.


Subject(s)
Globulins , Oryza , Glutens/chemistry , Glycine max , Oryza/metabolism , Molecular Dynamics Simulation , Spectrometry, Fluorescence , Globulins/chemistry , Molecular Docking Simulation
8.
Aging (Albany NY) ; 16(3): 2617-2637, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38305809

ABSTRACT

Pancreatic adenocarcinoma (PAAD) is a frequent malignant tumor in the pancreas. The incomplete understanding of cancer etiology and pathogenesis, as well as the limitations in early detection and diagnostic methods, have created an urgent need for the discovery of new therapeutic targets and drugs to control this disease. As a result, the current therapeutic options are limited. In this study, the weighted gene co-expression network analysis (WGCNA) method was employed to identify key genes associated with the progression and prognosis of pancreatic adenocarcinoma (PAAD) patients in the Gene Expression Profiling Interactive Analysis (GEPIA) database. To identify small molecule drugs with potential in the treatment of pancreatic adenocarcinoma (PAAD), we compared key genes to the reference dataset in the CMAP database. First, we analyzed the antitumor properties of small molecule drugs using cell counting kit-8 (CCK-8), AO/EB and Transwell assays. Subsequently, we integrated network pharmacology with molecular docking to explore the potential mechanisms of the identified molecules' anti-tumor effects. Our findings indicated that the progression and prognosis of PAAD patients in pancreatic cancer were associated with 11 genes, namely, DKK1, S100A2, CDA, KRT6A, ITGA3, GPR87, IL20RB, ZBED2, PMEPA1, CST6, and MUC16. These genes were filtered based on their therapeutic potential through comparing them with the reference dataset in the CMAP database. Taxifolin, a natural small molecule drug with the potential for treating PAAD, was screened by comparing it with the reference dataset in the CMAP database. Cell-based experiments have validated the potential of Taxifolin to facilitate apoptosis in pancreatic cancer cells while restraining their invasion and metastasis. This outcome is believed to be achieved via the HIF-1 signaling pathway. In conclusion, this study provided a theoretical basis for screening genes related to the progression of pancreatic cancer and discovered potentially active small molecule drugs. The experimental results confirm that Taxifolin has the ability to promote apoptosis in pancreatic cancer cells.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Quercetin/analogs & derivatives , Humans , Early Detection of Cancer , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Molecular Docking Simulation , Pancreas , Gene Expression Profiling , Apoptosis/genetics , Prognosis , Gene Expression Regulation, Neoplastic , Membrane Proteins , Receptors, Lysophosphatidic Acid
9.
Int J Biol Macromol ; 259(Pt 2): 129258, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218291

ABSTRACT

Economic loss due to fish spoilage exceeds 25 billion euros every year. Accurate and real-time monitoring of the freshness of fish can effectively cut down economic loss and food wastage. In this study, a dual-functional hydrogel based on sodium alginate-co-pigment complex with volatile antibacterial and intelligent indication was prepared and characterized. The characterization results indicated that the sodium alginate-co-pigment complex successfully improved the stability and color development ability of blueberry anthocyanins and bilberry anthocyanins at different temperatures and pH. The double cross-linking network inside the hydrogel conferred it with excellent mechanical properties. During rainbow trout storage, the hydrogel indicated a color difference of 73.55 on the last day and successfully extended the shelf-life of rainbow trout by 2 days (4 °C). Additionally, four dual-channel monitoring models were constructed using machine learning. The validation error of the genetic algorithm back propagation model (GA-BP) was only 5.6e-3, indicating that GA-BP can accurately monitor the freshness of rainbow trout. The rainbow trout real-time monitoring platform built based on GA-BP model can monitor the freshness of rainbow trout in real time through the images uploaded by users. The results of this study have broad applicability in the food industry, environmental conservation, and economic sustainability.


Subject(s)
Anthocyanins , Oncorhynchus mykiss , Animals , Anthocyanins/chemistry , Polysaccharides , Oncorhynchus mykiss/microbiology , Seafood/analysis , Food Packaging/methods , Alginates , Machine Learning , Hydrogen-Ion Concentration
10.
J Sci Food Agric ; 104(4): 2484-2492, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37972116

ABSTRACT

BACKGROUND: It is well known that hemp proteins have the disadvantages of poor solubility and poor emulsification. To improve these shortcomings, an alkali covalent cross-linking method was used to prepare hemp protein isolate-epigallocatechin-3-gallate biopolymer (HPI-EGCG) and the effects of different heat treatment conditions on the structure and emulsifying properties of the HPI-EGCG covalent complex were studied. RESULTS: The secondary and tertiary structures, solubility, and emulsification ability of the HPI-EGCG complexes were evaluated using particle size, zeta potential, circular dichroism (CD), and fluorescence spectroscopy indices. The results showed that the absolute value of zeta potential of HPI-EGCG covalent complex was the largest, 18.6 mV, and the maximum binding amount of HPI to EGCG was 29.18 µmol g-1 . Under heat treatment at 25-35 °C, the α-helix content was reduced from 1.87% to 0%, and the ß-helix content was reduced from 82.79% to 0% after the covalent binding of HPI and EGCG. The solubility and emulsification properties of the HPI-EGCG covalent complexes were improved significantly, and the emulsification activity index (EAI) and emulsion stability index (ESI) were increased by 2.77-fold and 1.21-fold, respectively. CONCLUSION: A new HPI-EGCG covalent complex was developed in this study to provide a theoretical basis for the application of HPI-EGCG in food industry. © 2023 Society of Chemical Industry.


Subject(s)
Cannabis , Catechin , Catechin/analogs & derivatives , Cannabis/chemistry , Heating , Antioxidants/chemistry , Catechin/chemistry , Biopolymers
11.
Int J Biol Macromol ; 258(Pt 2): 129098, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38161020

ABSTRACT

Bacterial infection often leads to failed wound healing, causing one-third of death cases globally. However, antibacterial nanomaterials and natural enzymes face limitations including low antibacterial efficiency, lack of catalytic performance, low safety, and instability. Therefore, a new Fe/N-doped chitosan-chelated carbon dot-based nanozyme CS@Fe-N CDs was developed, which showed multiple advantages such as highly efficient antibacterial activity, excellent peroxidase-like activity, high stability, and high biocompatibility, shortening the wound healing time. The ultra-small (6.14 ± 3.38 nm) CS@Fe-N CDs nanozyme accelerated the H2O2 to ·OH conversion, exhibiting excellent antibacterial performance against Staphylococcus aureus. The antibacterial activity was increased by over 2000-fold after catalysis. The CS@Fe-N CDs nanozyme also displayed outstanding peroxidase activity (Vmax/Km = 1.77 × 10-6/s), 8.8-fold higher than horseradish peroxidase. Additionally, the CS@Fe-N CDs nanozyme exhibited high stability at broad pH values (pH 1-12) and temperature ranges (20-90 °C). In vitro evaluation of cell toxicity proved that the CS@Fe-N CDs nanozyme had negligible cytotoxicity. In vivo, wound healing experiments demonstrated that the CS@Fe-N CDs could shorten the healing time of rat wounds by at least 4 days, and even had a better curative effect than penicillin. In conclusion, this therapeutic platform provides an effective antibacterial and biologically safe healing strategy for skin wounds.


Subject(s)
Chitosan , Rats , Animals , Chitosan/pharmacology , Carbon/pharmacology , Hydrogen Peroxide/pharmacology , Anti-Bacterial Agents/pharmacology , Wound Healing , Antioxidants/pharmacology , Peroxidases/pharmacology , Peroxidase/pharmacology
12.
Front Nutr ; 10: 1122045, 2023.
Article in English | MEDLINE | ID: mdl-37342551

ABSTRACT

Postmenopausal osteoporosis is one of the most common metabolic diseases in old women, and supplementing estrogen through bioactive substances is one of the important ways to improve menopausal syndrome. Some studies have confirmed that soybean isoflavone has estrogenic activity, and the main active component of soybean isoflavones is isoflavone aglycones. However, few studies have investigated the improvement effect of high-purity soy isoflavone aglycones on postmenopausal osteoporosis. Thus, the effect of different doses of high-purity soybeans isoflavone aglycone on the ovariectomized female osteoporosis rat model was evaluated by oral gavage. The rats were divided into seven experimental groups including SHAM, OVX, EE, SIHP, AFDP-L, AFDP-M, and AFDP-H, which was administered for 60 days from 30 days after ovariectomy. We collected blood from the abdominal aorta of rats on the 30th, 60th, and 90th days respectively, analyzed its serum biochemistry, and took out the femur for micro-CT imaging and bone microstructure parameter analysis. Results showed that the intervention effect of AFDP-H group on osteoporosis rats at 60 and 90 days was similar to that of EE group, and superior to the OVX group, SIHP group, AFDP-L group, AFDP-M group. The AFDP-H group inhibited the decrease in serum bone markers, bone density, trabeculae quantity, trabeculae thickness, and bone volume fraction, and increased the trabecular separation caused by ovariectomy, thereby significantly improving bone microstructure. It also prevented continuous weight gain and increased cholesterol levels in female rats. This study provided theoretical to application of soybean isoflavone aglycone in the intervention of osteoporosis. and confirmed that could replace chemical synthetic estrogen drugs.

13.
J Sci Food Agric ; 103(13): 6566-6573, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37229570

ABSTRACT

BACKGROUND: This study used enzymatic and Ca2+ cross-linking methods to prepare edible soy protein isolate (SPI) and sodium alginate (SA) interpenetrating polymer network hydrogels to overcome the disadvantages of traditional interpenetrating polymer network (IPN) hydrogels, such as poor performance, high toxicity, and inedibility. The influence of changes in SPI and SA mass ratio on the performance of SPI-SA IPN hydrogels was investigated. RESULTS: Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to characterize the structure of the hydrogels. Texture profile analysis (TPA), rheological properties, swelling rate, and Cell Counting Kit-8 (CCK-8) were used to evaluate physical and chemical properties and safety. The results showed that, compared with SPI hydrogel, IPN hydrogels had better gel properties and structural stability. As the mass ratio of SPI-SA IPN changed from 1:0.2 to 1:1, the gel network structure of hydrogels also tended to be dense and uniform. The water retention and mechanical properties of these hydrogels, such as storage modulus (G'), loss modulus (G"), and gel hardness increased significantly and were greater than those of the SPI hydrogel. Cytotoxicity tests were also performed. The biocompatibility of these hydrogels was good. CONCLUSIONS: This study proposes a new method to prepare food-grade IPN hydrogels with mechanical properties of SPI and SA, which may have strong potential for the development of new foods. © 2023 Society of Chemical Industry.


Subject(s)
Alginates , Hydrogels , Hydrogels/chemistry , Alginates/chemistry , Polymers/chemistry , Soybean Proteins , Spectroscopy, Fourier Transform Infrared
14.
Compr Rev Food Sci Food Saf ; 22(2): 1104-1127, 2023 03.
Article in English | MEDLINE | ID: mdl-36636773

ABSTRACT

The problems of spoilage, disease, and biofilm caused by bacterial quorum-sensing (QS) systems have posed a significant challenge to the development of the food industry. Quorum-quenching (QQ) enzymes can block QS by hydrolyzing or modifying the signal molecule, making these enzymes promising new candidates for use as antimicrobials. With many recent studies of QQ enzymes and their potential to target foodborne bacteria, an updated and systematic review is necessary. Thus, the goals of this review were to summarize what is known about the effects of bacterial QS on the food industry; discuss the current understanding of the catalytic mechanisms of QQ enzymes, including lactonase, acylase, and oxidoreductase; and describe strategies for the engineering and evolution of QQ enzymes for practical use. In particular, this review focuses on the latest progress in the application of QQ enzymes in the field of food. Finally, the current challenges limiting the systematic application of QQ enzymes in the food industry are discussed to help guide the future development of these important enzymes.


Subject(s)
Biofilms , Quorum Sensing , Bacteria , Food Industry
15.
J Sci Food Agric ; 103(3): 1194-1204, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36088619

ABSTRACT

BACKGROUND: Soybean 11S globulin has good functional properties, which are widely used in the field of food. However, natural soybean 11S globulin (N-11S) has low flexibility and is easy to aggregate, impacting its foaming process. Studies have shown that soybean 11S globulin in molten globule state (MG-11S) has better molecular flexibility than N-11S, and trehalose has been shown to improve the properties of proteins. Therefore, this study investigated the interaction mechanism between trehalose and MG-11S, and its impact on rheological and foaming properties of MG-11S. RESULTS: The molecular docking and intrinsic fluorescence results showed that hydrogen bonding was the main interaction force at lower than 0.5 mol L-1 trehalose added. Meanwhile, rheology and foaming showed that the MG-11S-trehalose complexes had better viscoelasticity, foaming ability (66.67-86.67%) and foaming stability (75.00-89.29%) than N-11S (16.67% foaming ability and 40.00% foaming stability); however, when the trehalose was higher than 0.5 mol L-1 , molecular crowding occurred and H-bonds were weakened, resulting in reduction of foaming capacities. Microstructure determination showed that trehalose attached to the surface of foam membrane; meanwhile, the foaming structure of the complex with 0.5 mol L-1 trehalose had a thicker liquid film with decreased drainage rate, less agglomeration and disproportionation of foam, illustrating the best foaming ability and foaming stability. CONCLUSION: The results suggested that trehalose at different concentrations can interact with MG-11S through different mechanisms, and improve the foaming capacity of MS-11S. This provided a reference for the application of MS-11S in foaming food. © 2022 Society of Chemical Industry.


Subject(s)
Globulins , Glycine max , Glycine max/chemistry , Soybean Proteins/chemistry , Trehalose , Molecular Docking Simulation , Globulins/chemistry , Allergens
16.
Food Chem ; 408: 135230, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36549163

ABSTRACT

The work aimed to assess the antioxidant ability and obtain a new antioxidant peptide from rice bran protein. Rice bran protein was hydrolyzed by Alcalase, Neutral, Pepsin, Chymotrypsin, and Trypsin, separately. Trypsin hydrolysate (T-RBPH) showed high Fe2+ chelating activity (IC50, 2.271 ± 0.007 mg/mL), DPPH and hydroxyl radical scavenging ability (IC50, 0.191 ± 0.006 and 1.038 ± 0.034 mg/mL). Moreover, T-RBPH could alleviate the H2O2-induced oxidative damage in Caco-2. The T-RBPH was purified and identified by UF, GF, FPLC, and LC-MS/MS. Finally, 9-amino acid peptide-AFDEGPWPK with low molecular weight (1045.48 Da), high antioxidant activity, good safety, and solubility was screened by in silico method and chemical oxidation determination, and its interaction with Keap1 was also demonstrated. The ORAC and DPPH radical scavenging ability of AFDEGPWPK were 44.16 ± 0.79 and 28.38 ± 0.14 µmol TE/mM. Moreover, the Molecular docking and Western blot (WB) results showed that AFDEGPWPK could enter the binding pocket in the Kelch domain and activate Keap1/Nrf2/HO-1 pathway.


Subject(s)
Antioxidants , Oryza , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Protein Hydrolysates/chemistry , Oryza/chemistry , Kelch-Like ECH-Associated Protein 1/metabolism , Chromatography, Liquid , Trypsin/metabolism , Molecular Docking Simulation , Hydrogen Peroxide/metabolism , Caco-2 Cells , Tandem Mass Spectrometry , NF-E2-Related Factor 2/metabolism , Peptides/chemistry
17.
Food Res Int ; 162(Pt B): 112108, 2022 12.
Article in English | MEDLINE | ID: mdl-36461408

ABSTRACT

Broken rice is an important by-product during milling process of rice, which is rich in protein. To increase the value of by-products and search for effective antioxidants, the antioxidant peptides from broken rice protein hydrolysate were separated and identified by ultrafiltration, gel filtration chromatography, fast protein liquid chromatography, and LC-MS/MS in this study. These identified peptides were further screened using a combined in silico and in vitro method and their antioxidant mechanism was explored by Western blot and molecular docking analysis. Ninety-eight peptides were obtained after antioxidant activity-oriented isolation and four novel peptides, SGDWSDIGGR, DFGSEILPR, GEPFPSDPKKQLQ, and GEKGGIPIGIGK, with excellent solubility, safety, and antioxidant activity were synthesized. Among these, SGDWSDIGGR showed good antioxidant activities in the extracellular assay (41.57 µmol TE/g and 29.41 % in ORAC and DPPH assay, respectively.), and it possessed a protective effect against H2O2-injured oxidative stress in 2BS cells in a dose-dependent manner. Furthermore, Western blot and molecular docking results showed that SGDWSDIGGR achieves antioxidant ability by occupying the Nrf2-binding site, activating the Keap1-Nrf2 signaling pathway, and upregulating the expression of antioxidant enzymes. This study extends the rice industry chain and provides insights into the selection and mechanisms research of antioxidant peptides.


Subject(s)
Oryza , Protein Hydrolysates , Protein Hydrolysates/pharmacology , Antioxidants/pharmacology , NF-E2-Related Factor 2 , Kelch-Like ECH-Associated Protein 1 , Hydrogen Peroxide , Chromatography, Liquid , Molecular Docking Simulation , Tandem Mass Spectrometry , Peptides/pharmacology
18.
Molecules ; 27(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558197

ABSTRACT

The aim of this research was to characterize differences and sources of volatile flavor compounds by using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and principal component analysis (PCA). Three sweet cherry fruits from different cultivars (cv. Tie, Van, and Lap) and their wines that were produced by the same yeast were detected. The results showed that 27 flavor compounds were identified in cherry fruits, including 10 alcohols, 7 esters, 7 aldehydes, 2 ketones, and 1 organic acid. Twenty-three flavor compounds were identified in cherry wines, including nine esters, eight alcohols, three aldehydes, two organic acids, and one ketone. In cherry fruits, aldehydes, several alcohols, and one ketone were the most prevalent in cv. Tie, and the majority of esters and alcohols in cv. Van. After fermentation, ethanol, butanol, butanal, ethyl propionate, propionaldehyde, 3-hydroxy-2-butanone, and acetic acid increased, whereas 1-hexanol, 3-methyl-3-buten-1-ol, 1-penten-3-ol, ethyl acetate, methyl acetate, (E)-2-hexenal and hexanal decreased. Few differences were detected in the type and content of volatile compounds in cherry wines from cv. Tieton (WT) and cv. Van (WV). Almost all aldehydes are derived from cherry fruits, which cannot be produced during wine-making, and other volatile compounds are almost all produced by saccharomyces cerevisiae. The volatile compounds of cherry wines were determined by row materials and fermentation cultures. Flavor fingerprints were established by HS-GC-IMS and PCA, which provided a theoretical foundation for the evaluation and improvement of flavor quality in cherry wine-making.


Subject(s)
Prunus avium , Volatile Organic Compounds , Wine , Wine/analysis , Gas Chromatography-Mass Spectrometry/methods , Principal Component Analysis , Ion Mobility Spectrometry , Volatile Organic Compounds/analysis , Aldehydes/analysis , Ethanol/analysis , Ketones/analysis , Acetic Acid/analysis , Esters/analysis , China
19.
J Agric Food Chem ; 70(45): 14510-14521, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36331356

ABSTRACT

The N-acyl homoserine lactone (AHL) acylases are widely used as quorum sensing (QS) blockers to inhibit bacterial food spoilage. However, their substrate specificity for long-chain substrates weakens their efficiency. In this study, a computer-assisted design of AHL acylase PF2571 was performed to modify its substrate scope. The results showed that the variant PF2571H194Y, L221R could effectively quench N-hexanoyl-l-homoserine lactone and N-octanoyl-l-homoserine lactone without impairing its activity against long-chain AHLs. Kinetic analysis of the enzymatic activities further corroborated the observed substrate expansion. The inhibitory activities of this variant were significantly enhanced against the QS phenotype of Aeromonas veronii BY-8, with inhibition rates of 45.67, 78.25, 54.21, and 54.65% against proteases, motility, biofilms, and extracellular polysaccharides, respectively. Results for molecular dynamics simulation showed that the steric hindrance, induced by residue substitution, could have been responsible for the change in substrate scope. This study dramatically improves the practicability of AHL acylase in controlling food spoilage.


Subject(s)
Acyl-Butyrolactones , Amidohydrolases , Acyl-Butyrolactones/metabolism , Kinetics , Amidohydrolases/chemistry , Quorum Sensing , 4-Butyrolactone/metabolism
20.
Proc Natl Acad Sci U S A ; 119(30): e2201168119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858425

ABSTRACT

Mitochondrial remodeling during the peri-implantation stage is the hallmark event essential for normal embryogenesis. Among the changes, enhanced oxidative phosphorylation is critical for supporting high energy demands of postimplantation embryos, but increases mitochondrial oxidative stress, which in turn threatens mitochondrial DNA (mtDNA) stability. However, how mitochondria protect their own histone-lacking mtDNA, during this stage remains unclear. Concurrently, the mitochondrial genome gain DNA methylation by this stage. Its spatiotemporal coincidence with enhanced mitochondrial stress led us to ask if mtDNA methylation has a role in maintaining mitochondrial genome stability. Herein, we report that mitochondrial genome undergoes de novo mtDNA methylation that can protect mtDNA against enhanced oxidative damage during the peri-implantation window. Mitochondrial genome gains extensive mtDNA methylation during transition from blastocysts to postimplantation embryos, thus establishing relatively hypermethylated mtDNA from hypomethylated state in blastocysts. Mechanistic study revealed that DNA methyltransferase 3A (DNMT3A) and DNMT3B enter mitochondria during this process and bind to mtDNA, via their unique mitochondrial targeting sequences. Importantly, loss- and gain-of-function analyses indicated that DNMT3A and DNMT3B are responsible for catalyzing de novo mtDNA methylation, in a synergistic manner. Finally, we proved, in vivo and in vitro, that increased mtDNA methylation functions to protect mitochondrial genome against mtDNA damage induced by increased mitochondrial oxidative stress. Together, we reveal mtDNA methylation dynamics and its underlying mechanism during the critical developmental window. We also provide the functional link between mitochondrial epigenetic remodeling and metabolic changes, which reveals a role for nuclear-mitochondrial crosstalk in establishing mitoepigenetics and maintaining mitochondrial homeostasis.


Subject(s)
DNA Methylation , DNA, Mitochondrial , Embryo Implantation , Genome, Mitochondrial , Oxidative Stress , Animals , Blastocyst/enzymology , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A/genetics , DNA Methyltransferase 3A/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Embryo Implantation/genetics , Gain of Function Mutation , Loss of Function Mutation , Mice , Mitochondria/genetics , Mitochondria/metabolism , Oxidative Stress/genetics , DNA Methyltransferase 3B
SELECTION OF CITATIONS
SEARCH DETAIL
...