Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(5): e2309981121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38252819

ABSTRACT

Direct use of metals as battery anodes could significantly boost the energy density, but suffers from limited cycling. To make the batteries more sustainable, one strategy is mitigating the propensity for metals to form random morphology during plating through orientation regulation, e.g., hexagonal Zn platelets locked horizontally by epitaxial electrodeposition or vertically aligned through Zn/electrolyte interface modulation. Current strategies center around obtaining (002) faceted deposition due to its minimum surface energy. Here, benefiting from the capability of preparing a library of faceted monocrystalline Zn anodes and controlling the orientation of Zn platelet deposits, we challenge this conventional belief. We show that while monocrystalline (002) faceted Zn electrode with horizontal epitaxy indeed promises the highest critical current density, the (100) faceted electrode with vertically aligned deposits is the most important one in suppressing Zn metal corrosion and promising the best reversibility. Such uniqueness results from the lowest electrochemical surface area of (100) faceted electrode, which intrinsically builds upon the surface atom diffusion barrier and the orientation of the pallets. These new findings based on monocrystalline anodes advance the fundamental understanding of electrodeposition process for sustainable metal batteries and provide a paradigm to explore the processing-structure-property relationships of metal electrodes.

2.
J Hazard Mater ; 430: 128455, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35739657

ABSTRACT

Submerged macrophytes and their epiphytic biofilms are important media for metal transport/transformation in aquatic environment. However, the bacterial community structure and the contribution of the epiphytic biofilm to the heavy metal accumulation remain unclear. Therefore, in this study, water, sediment, submerged macrophyte (Potamogeton crispus L.) and its epiphytic biofilm samples in three sites of the moat in the industrial area of Hangzhou were collected for analyzing. The bacterial community structure was significantly impacted by the TN concentrations, and Genus Aeromonas (24.5-41.8%), Acinetobacter (16.2-29.8%) and Pseudomonas (12.6-23.6%) dominated in all epiphytic biofilm samples, which had the heavy metal pollutant resistibility. The contents of Cr in biofilms (7.4-8.3 mg/kg, DW) were significantly higher than those in leaves (1.0-2.4 mg/kg, DW), while the contents of Cu (11.0-13.9 mg/kg, DW) in leaves were significantly higher than those in biofilms (0.7-3.9 mg/kg, DW) in all the three sites. The BCF values of metals in the biofilm were followed the order of YF < IC < ETS. The results indicated that the epiphytic biofilm had positive effects on the metal bioaccumulation, and the metal accumulation ability increased with the hydrodynamic forces. Bioaccumulation by the epiphytic biofilm may be an effective way for metal (especially Cr) remediation.


Subject(s)
Metals, Heavy , Potamogetonaceae , Water Pollutants, Chemical , Bioaccumulation , Biofilms , Water Pollutants, Chemical/analysis
3.
Article in English | MEDLINE | ID: mdl-35564879

ABSTRACT

Frequent outbreaks of harmful algal blooms (HABs) represent one of the most serious outcomes of eutrophication, and light radiation plays a critical role in the succession of species. Therefore, a better understanding of the impact of light radiation is essential for mitigating HABs. In this study, Chlorella pyrenoidosa and non-toxic and toxic Microcystis aeruginosa were mono-cultured and co-cultured to explore algal responses under different nutrient regimes. Comparisons were made according to photosynthetically active radiation (PAR), UV-B radiation exerted oxidative stresses, and negative effects on the photosynthesis and growth of three species under normal growth conditions, and algal adaptive responses included extracellular polymeric substance (EPS) production, the regulation of superoxide dismutase (SOD) activity, photosynthetic pigments synthesis, etc. Three species had strain-specific responses to UV-B radiation and toxic M. aeruginosa was more tolerant and showed a higher adaptation capability to UV-B in the mono-cultures, including the lower sensitivity and better self-repair efficiency. In addition to stable µmax in PAR ad UV-B treatments, higher EPS production and enhanced production of photosynthetic pigments under UV-B radiation, toxic M. aeruginosa showed a better recovery of its photosynthetic efficiency. Nutrient enrichment alleviated the negative effects of UV-B radiation on three species, and the growth of toxic M. aeruginosa was comparable between PAR and UV-B treatment. In the co-cultures with nutrient enrichment, M. aeruginosa gradually outcompeted C. pyrenoidosa in the PAR treatment and UV-B treatment enhanced the growth advantages of M. aeruginosa, when toxic M. aeruginosa showed a greater competitiveness. Overall, our study indicated the adaptation of typical algal species to ambient UV-B radiation and the stronger competitive ability of toxic M. aeruginosa in the UV-radiated waters with severer eutrophication.


Subject(s)
Chlorella , Microcystis , Chlorella/physiology , Extracellular Polymeric Substance Matrix , Harmful Algal Bloom , Nutrients , Photosynthesis , Ultraviolet Rays
4.
Bull Environ Contam Toxicol ; 108(6): 1006-1012, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35583557

ABSTRACT

Biodegradable plastics attract public attention as promising substitutes for traditional nondegradable plastics which have caused the serious white pollution problem due to their persistence. However, even for biodegradable plastics, natual conditions for the rapid and complete degradation are rare. Even more serious is that biodegradable plastics might be disintegrated into microplastics more rapidly than tranditional plastics, emerging as another threat to the environment. Similar to traditional microplastics, biodegradable microplastics could adsorb many pollutants by various physicochemical effects and release additives. Biodegradable microplastics have been confirmed to be toxic to the organisms as particle matter and the vector as pollutants. Under some conditions, biodegradable microplastics may pose more severe negative impacts on the organisms. With the fierely increasing trend to replace the nondegradable plastic commodities with biodegradable ones, it is necessary to evaluate whether biodegradable plastics and the generated microplastics would alleviate plastic pollution or induce greater ecological impacts.


Subject(s)
Biodegradable Plastics , Environmental Pollutants , Water Pollutants, Chemical , Environmental Pollution , Microplastics/toxicity , Plastics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
5.
Article in English | MEDLINE | ID: mdl-35410015

ABSTRACT

In order to study the temporal and spatial distribution characteristics of atmospheric pollutants in cities (districts and counties) in the Chengdu-Chongqing Twin-city Economic Circle (CCEC) and to provide a theoretical basis for atmospheric pollution prevention and control, this paper combined Ambient Air Quality Standards (AAQS) and WHO Global Air Quality Guidelines (GAQG) to evaluate atmospheric pollution and used spatial correlation to determine key pollution areas. The results showed that the distribution of atmospheric pollutants in CCEC presents a certain law, which was consistent with the air pollution transmission channels. Except for particulate matter with an aerodynamic diameter equal to or less than 2.5 µm (PM2.5) and ozone (O3), other pollutants reached Grade II of AAQS in 2020, among which particulate matter with an aerodynamic diameter equal to or less than 10 µm (PM10), PM2.5, sulfur dioxide (SO2), nitrogen dioxide (NO2) and carbon monoxide (CO) have improved. Compared with the air quality guidelines given in the GAQG, PM10, PM2.5, NO2 and O3 have certain effects on human health. The spatial aggregation of PM10 and PM2.5 decreased year by year, while the spatial aggregation of O3 increased with the change in time, and the distribution of NO2 pollution had no obvious aggregation. Comprehensive analysis showed that the pollution problems of particulate matter, NO2 and O3 in CCEC need to be further controlled.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Ozone , Air Pollutants/analysis , Air Pollution/analysis , China , Cities , Humans , Nitrogen Dioxide/analysis , Ozone/analysis , Particulate Matter/analysis , Sulfur Dioxide/analysis
6.
Chemosphere ; 300: 134531, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35398469

ABSTRACT

Toxic dioxin or/and dioxin-like compounds could be naturally formed from the reaction of halophenols on Fe3+-montmorillonite minerals under ambient conditions. Given that the toxicities and productions of dioxin or/and dioxin-like compounds are largely determined by the number, species, and position of the carried halogen atoms, it is necessary to explore the substituent effects on the reaction of halophenols with Fe3+-montmorillonite. Herein, Fe3+-montmorillonite catalyzed polymerizations of six halophenols were examined in a wide range of relative humidity (10%∼80%) using combinations of mass spectrometry identifications and density functional theory calculations. Results show that both the position and species of the substituents substantially impact the reaction rate, product species, and transformation pathways. In general, regardless of humidity ortho-substituted chlorophenols are more reactive than meta-substituted chlorophenols, which is also supported by the density functional theory calculations indicating that the ortho positions are more likely to be attacked. Regarding substituent species, bromophenols are slightly more reactive and also more easily affected by humidities than chlorophenols, which is due to the weaker electron absorbing ability of the bromine atom than the chlorine atom. Hydroxylated polyhalogenated diphenyl ethers are more frequently detected polymerization products, although hydroxylated polyhalogenated biphenyls are greater quantity of products. Overall, this study provides useful information for understanding the natural formation of dioxin or/and dioxin-like compounds mediated by clay minerals and underlying reaction mechanisms.


Subject(s)
Chlorophenols , Dioxins , Polychlorinated Dibenzodioxins , Bentonite/chemistry , Chlorophenols/chemistry , Clay/chemistry , Minerals/chemistry
7.
Environ Sci Pollut Res Int ; 29(6): 9354-9368, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34505238

ABSTRACT

Phosphorus (P) has an important role in eutrophication and it is essential to explore the processes and mechanisms of P mobility in natural waters. In this study, laboratory experiments were conducted to simulate the SW system (sediment and water) and SAW system (sediment, algae, and water) under four hydrodynamic intensity conditions (static control, 50 rpm, 125 rpm, and 200 rpm treatments), to investigate P mobility. Results in SW system showed that sediment was an important source of P for overlying water, and the released total P (TP) increased with stronger hydrodynamic intensity, when P associated with metal pools (redox-sensitive P [BD-P] and meta-oxides bound P [NaOH-P]) were the most unstable and easier to migrate into the overlying water. Stronger hydrodynamic disturbances could enhance the processes including sediment resuspension, dissolution of particles, and release of P, when P mobility had a close relationship with redox conditions near sediment-water interface (SWI). Therefore, the release of TP, BD-P, and NaOH-P from sediment increased and decreased in the control and 50-200 rpm treatments over time. In SAW system, the release of TP significantly increased from sediment comparing to SW system, and the growth of Microcystis aeruginosa could selectively enhance the release of BD-P, NaOH-P, and organic P (OP). Meanwhile, the released P from sediment was quickly accumulated by algal cells. The maximum accumulation ability of P by cells, the highest photosynthetic efficiency, and the best growth of M. aeruginosa were observed in 125 rpm treatment. But with excessively strong hydrodynamic intensity (200 rpm treatment), the accumulation ability of P and alkaline phosphatase activity (APA) of M. aeruginosa was suppressed, which might hinder algal utilization of P and inhibit algal growth. Overall, our findings demonstrated the patterns of P mobility in natural ecosystems and could contribute to the understanding of P cycling.


Subject(s)
Cyanobacteria , Phosphorus , Ecosystem , Geologic Sediments , Hydrodynamics , Lakes , Water
8.
Environ Pollut ; 256: 113441, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31672370

ABSTRACT

Phosphorus (P) plays a critical role in eutrophication and algal growth; therefore, improving our understanding of the impact of P is essential to control harmful algal blooms. In this study, Microcystis aeruginosa was treated with 5-h ambient irradiation in the medium with different dissolved inorganic P (DIP) concentrations, DIP-free, moderate-DIP, and high-DIP, to explore its growth and other physiological responses. Compared to photosynthetically active radiation (PAR), UV-A (320-400 nm) and UV-B (280-320 nm) radiation had inhibitive effects on the photosynthesis and growth of M. aeruginosa, while high P availability could alleviate or eliminate the negative effects of UV radiation. The photosynthetic parameters had a minimum reduction and quickly recovered after re-inoculation under high-DIP conditions. Confirmed by SEM, photosynthetic pigments, the generation of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and other methods, ambient UV radiation exerted oxidative stresses rather than direct lethal effects on M. aeruginosa. Photosynthetic parameters indicated that algal UV-adaptation processes could include decreasing photo-induced damages and increasing self-repair efficiency. The P acquired by M. aeruginosa cells can have two function, which included alleviating UV-induced negative effects and sustaining algal growth. Consequently, UV-adaptation processes of M. aeruginosa resulted in an elevated demand for DIP, which resulted to increased P uptake rates and cellular P quota under moderate and high-DIP conditions. Therefore, the production of carotenoid and phycocyanin, and SOD activity increased under UV stress, leading to a better adaptation capability of M. aeruginosa and decreased negative effects of UV radiation on its growth. Overall, our findings demonstrated the significant interactive effects of P enrichment and irradiation on typical cyanobacteria, and the strong adaptation capability of M. aeruginosa in the eutrophic UV-radiated waters.


Subject(s)
Acclimatization , Microcystis/physiology , Phosphorus/metabolism , Ultraviolet Rays , Carotenoids , Cyanobacteria , Harmful Algal Bloom , Microcystis/growth & development , Oxidative Stress , Photosynthesis/drug effects , Phycocyanin , Reactive Oxygen Species
9.
Environ Pollut ; 220(Pt A): 274-285, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27665120

ABSTRACT

Phosphorus (P) plays a critical role in algal growth; therefore, a better understanding of P availability is essential to control harmful algal blooms. Three algae species, Microcystis aeruginosa, Chlorella pyrenoidosa, and Pseudokirchneriella subcapitata, were mono-cultured and co-cultured on three types of P substrates, dissolved inorganic P (DIP), phosphomonoesters glucose-6-phosphate (G-6-P) and ß-glycerol phosphate (ß-glycerol-P), and phosphonate (glyphosate), to explore their growth and P utilization. All three species could utilize dissolved organic P (DOP) to sustain their growth, whereas DIP was their preferred P substrate in both culture types. Algae could regulate the P uptake capacity under different P conditions, and the added P could be rapidly accumulated at the beginning of the culture and slowly utilized during the subsequent life cycle. M. aeruginosa exhibited wider P selectivity and could utilize all three P substrates, whereas the other two species could only use phosphomonoester (G-6-P and ß-glycerol-P) in the mono-cultures. However, in the co-cultures, the relative bioavailability of DOP for M. aeruginosa and C. pyrenoidosa was enhanced, and M. aeruginosa might contribute to the growth of C. pyrenoidosa and P. subcapitata when fed with glyphosate. The three species showed an intrinsic ability to produce alkaline phosphatase (AP), and AP activity (APA) was regulated by Pi stress. However, high APA did not necessarily lead to high Pi release and algal growth on unfavorable substrates. Although M. aeruginosa was not superior in growth rate in the mono-cultures, it showed a better P accumulation ability and maintained stable growth on different P substrates. Moreover, it was a good competitor, suppressing the thriving growth of the other species in co-cultures. Overall, the findings indicated the strategic flexibility of P utilization by algae and the strong competitive ability of M. aeruginosa in Pi-limited and DOP-enriched natural waters.


Subject(s)
Chlorella/physiology , Phosphorus/metabolism , Water Pollutants, Chemical/metabolism , Alkaline Phosphatase , Chlorella/growth & development , Coculture Techniques , Glycerophosphates , Harmful Algal Bloom , Microcystis/growth & development , Microcystis/physiology
10.
Huan Jing Ke Xue ; 36(4): 1301-8, 2015 Apr.
Article in Chinese | MEDLINE | ID: mdl-26164904

ABSTRACT

In order to determine the effects of nutrient inputs on changes of phosphorus forms and phytoplankton growth in large shallow lakes, an enrichment bioassay was conducted using surface lake water collected from the Meiliang Bay of Taihu Lake in spring. The concentration of different phosphorus forms, phytoplankton biomass (chlorophyll a) and alkaline phosphatase activity (APA) was analyzed after the addition of different concentrations of inorganic nutrients. The results showed that the phytoplankton biomass increased significantly with the addition of phosphorus (P), but with no primary effect from nitrogen (N), which suggested the phytoplankton growth was mainly limited by P. The maximum growth rate and the highest concentration of chlorophyll both occurred in the SRP 0.015 mg x L(-1) treatment. Nitrate addition could improve the bioavailability of phosphorus, accelerate the phosphorus cycling process and promote the growth of APA. There was an induction-repression mechanism resulting in a negative relationship between APA and orthophosphate concentration. The APA was obviously stimulated under PO4(3-) -P ≤ 0.025 mg x L(-1). This paper researches the transformation and cycling process of phosphorus in water and the induction-repression mechanism between the APA and orthophosphate concentration. The result can help to reveal the compensation path of nutrients in algae growth process and provide a theoretical basis for the further reveal of the mechanism of algae outbreaks.


Subject(s)
Lakes , Phosphorus/chemistry , Phytoplankton/growth & development , Biomass , China , Fresh Water , Nitrogen , Seasons
11.
Biol Trace Elem Res ; 165(2): 222-32, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25686765

ABSTRACT

Freshwater bivalves such as Corbicula fluminea (Müller) are useful biomonitors for cadmium pollution because they absorb heavy metals and accumulate them in their tissues. We exposed C. fluminea in the laboratory to natural and cadmium (Cd)-spiked sediments below flowing water in order to evaluate the organisms' Cd accumulation and metallothionein (MT) response under hydrodynamic conditions. The accumulation of Cd and the induction of MT in C. fluminea were determined at 0, 1, 3, 6, 10, 16, and 23 days. Hydrodynamic conditions, represented by a water flow rate of 14 or 3.2 cm/s, increased Cd accumulation in the visceral mass, gill, foot, and mantle of C. fluminea in the first 3 or 6 days in the natural sediment. Cd concentrations in the C. fluminea tissues kept increasing over time in the three treatments, and significant differences were observed in Cd accumulation after 6 (visceral mass), 10 (foot) and 16 (gill and mantle) days among the three groups. The MT concentrations were barely affected by hydrodynamic conditions and were significantly linearly related to the Cd concentration in the visceral mass in the natural sediment and binomially related to it in the Cd-spiked sediment. Hydrodynamic conditions enhanced the accumulation of Cd in the soft tissues of C. fluminea, especially in the Cd-spiked sediment, but stronger hydrodynamic forces did not increase Cd accumulation. MT may be considered an indicator for Cd accumulation in C. fluminea under hydrodynamic conditions, but only when the Cd concentrations in the tissue remain below the toxic threshold values.


Subject(s)
Cadmium/metabolism , Gills/drug effects , Metallothionein/metabolism , Animals , Corbicula , Equipment Design , Fresh Water , Geologic Sediments , Hydrodynamics , Time Factors , Water , Water Pollutants, Chemical , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...