Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Crit Rev Biotechnol ; 41(4): 580-593, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33550854

ABSTRACT

Ergothioneine is a sulfur-containing histidine derivative, that possessesexcellent antioxidant activity and has been used in the food and cosmetics industries. It plays a significant role in anti-aging and the prevention of various diseases. This review will briefly introduce the functions and applications of ergothioneine, elaborate the biosynthetic pathways of ergothioneine and describe several strategies to increase the production of ergothioneine. Then the efficient extraction and detection methods of ergothioneine will be presented. Finally, several proposals are put forward to increase the yield of ergothioneine, and the development prospects of ergothioneine will be discussed.


Subject(s)
Ergothioneine , Antioxidants , Biosynthetic Pathways , Biotechnology , Ergothioneine/metabolism , Histidine/metabolism
2.
Appl Biochem Biotechnol ; 192(3): 881-894, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32607896

ABSTRACT

A stable culture environment is the key for optimal growth and metabolic activity of microorganisms, especially in marine species, and intermittent feeding during DHA production using Schizochytrium sp. generates an unstable culture environment. To investigate the effect of unstable culture environment on the cells' physiological status and DHA synthesis, fermentations with different feeding strategies were performed on the lab scale. The intermittent feeding strategy caused fluctuations of substrate concentration and osmotic pressure, which had a negative effect on cell division and product synthesis. The physiological status and metabolic level of Schizochytrium sp. were relatively stable under a continuous feeding strategy with a relatively stable substrate concentration of 20-25 g/L, which was beneficial for the efficient transformation of substrate, leading to an improvement of DHA productivity. This strategy was further applied to pilot scale, whereby the DHA content, DHA productivity, convert ratio of glucose to lipid and DHA reached 55.02%, 320.17 mg/(L·h), 24.35%, and 13.40%, respectively. This study therefore provides an efficient strategy for ensuring a stable culture environment for the production of DHA and similar metabolites. Graphical Abstract.


Subject(s)
Culture Techniques/methods , Docosahexaenoic Acids/biosynthesis , Fermentation , Stramenopiles/growth & development , Stramenopiles/metabolism , Bioreactors , Biotechnology , Biotransformation
3.
Bioresour Technol ; 294: 122231, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31606596

ABSTRACT

In this study, the effects of salt stress on the physiological, lipidomic and transcriptomic profiles of halophilic microalga Schizochytrium sp. were investigated. In general, Schizochytrium sp. could survive under high osmotic fermentation medium containing 30 g/L NaCl, and showed a significant increase in C14:0 percentage in total fatty acids. In lipidomic analysis, C14:0 was specifically enriched in phosphatidylcholine (PC), and membrane phospholipids participated in the salt stress response mostly. Specially, one novel signal lipid N-acylphosphatidylethanolamine (NAPE) (18:0/20:3/14:0) was upregulated significantly. Transcriptomic analysis revealed glycerol-3-phosphate acyltransferase (GPAT) and phospholipase ABHD3 (PLABDH3) were involved in C14:0 metabolism and NAPE biosynthesis. Signalling pathways they mediated were activated as evident by high expression level of Myristoyl-CoA: protein N-myristoyltransferase (NMT) and NAPE-hydrolyzing PLD (NAPE-PLD). This study gives us an insight in specific responses to salt stress in Schizochytrium sp. and provides a considerable proportion of novel genes that could commendably be used for engineering modification.


Subject(s)
Salt Stress , Transcriptome , Fatty Acids , Phospholipids , Signal Transduction
4.
Bioresour Technol ; 293: 122135, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31540787

ABSTRACT

Microalgae have attracted great attention as a promising sustainable resource for biofuel production. In studies aiming to improve lipid accumulation, many key enzymes involved in lipid biosynthesis were identified and confirmed, but genetic engineering remains a challenge in most species of microalgae. In an alternative approach, various chemical modulators can be used to directly regulate the lipid biosynthesis pathway, with similar effects to gene overexpression and interference approaches, including improving the precursor supply and blocking competing pathways. The produced lipid can be protected from being converted into other metabolites by the chemicals such as lipase inhibitors. In addition, a few chemicals were also demonstrated to greatly influence cell growth and lipid accumulation by indirect regulation of the lipid biosynthesis pathway, such as increasing cell permeability or regulating oxidative stress. Thus, adding chemical modulators can be a useful alternative strategy for improving lipid accumulation in large-scale cultivation of microalgae.


Subject(s)
Microalgae , Biofuels , Genetic Engineering , Lipids
5.
Appl Microbiol Biotechnol ; 103(8): 3239-3248, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30877356

ABSTRACT

Microalgae are arguably the most abundant single-celled eukaryotes and are widely distributed in oceans and freshwater lakes. Moreover, microalgae are widely used in biotechnology to produce bioenergy and high-value products such as polyunsaturated fatty acids (PUFAs), bioactive peptides, proteins, antioxidants and so on. In general, genetic editing techniques were adapted to increase the production of microalgal metabolites. The main genome editing tools available today include zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas nuclease system. Due to its high genome editing efficiency, the CRISPR/Cas system is emerging as the most important genome editing method. In this review, we summarized the available literature on the application of CRISPR/Cas in microalgal genetic engineering, including transformation methods, strategies for the expression of Cas9 and sgRNA, the CRISPR/Cas9-mediated gene knock-in/knock-out strategies, and CRISPR interference expression modification strategies.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing , Microalgae/genetics , CRISPR-Associated Protein 9/genetics , Gene Expression Regulation , Gene Targeting , Genetic Engineering , RNA, Guide, Kinetoplastida/genetics , Transformation, Genetic
6.
Bioprocess Biosyst Eng ; 42(5): 817-827, 2019 May.
Article in English | MEDLINE | ID: mdl-30758672

ABSTRACT

Menaquinone-7 (MK-7) plays an important role in blood clotting, cardiovascular disease and anti-osteoporosis, and has been wildly used in the food additives and pharmaceutical industries. The aim of this study was to investigate the mechanism of menaquinone-7 biosynthesis in response to different oxygen supplies in Bacillus natto. The differences of fermentation performance, intracellular metabolites, oxidative stress reaction and enzyme activities of Bacillus natto R127 were analyzed under different KLa. Glycerol consumption rate and MK-7 yield at 24.76 min- 1 was 2.1 and 7.02 times of that at 18.23 min- 1. Oxidative stress analysis showed the cell generated more active oxygen and possessed higher antioxidant capacity at high oxygen supply condition. Meanwhile, high pyruvate kinase and high cytochrome c oxidase activities were also observed at 24.76 min- 1. Furthermore, comparative metabolomics analyses concluded series of biomarkers for high MK-7 biosynthesis and cell rapid growth. Besides, several metabolic responses including low glyceraldehyde-3-phosphate accumulation, low flux from pyruvate to lactic acid, high active TCA pathway, were also found to be associated with high MK-7 accumulation at high oxygen supply conditions. These findings provided the information for better understanding of oxygen effect on MK-7 biosynthesis and lay a foundation for further improvement of MK-7 production as well.


Subject(s)
Bacillus subtilis/metabolism , Glycerol/metabolism , Oxidative Stress , Oxygen Consumption , Oxygen/metabolism , Vitamin K 2/analogs & derivatives , Vitamin K 2/metabolism
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(4): 552-566, 2019 04.
Article in English | MEDLINE | ID: mdl-30308323

ABSTRACT

Microalgal lipids have drawn great attention as a promising sustainable resource for biodiesel or food supplement production. The development of high-performance strains of microalgae by metabolic engineering is invaluable for increasing the quantity or quality of desired lipids. The synthesis routes of lipids used as biodiesel in microalgae are based on fatty acid synthase (FAS) and triacylglycerols (TAG) biosynthesis pathway. Polyunsaturated fatty acids (PUFAs), including ω-6 and ω-3 fatty acids, are essential nutrients for humans. Notably, microalgae possess two distinct pathways for polyunsaturated fatty acids (PUFAs) biosynthesis, including the desaturase/elongase pathway and the polyketide synthase (PKS) pathway. Thus, it is necessary to identify which biosynthetic pathways are responsible for PUFA synthesis in particular microalgae species. In recent years, various key enzymes and functional domains involved in fatty acid and TAG biosynthesis pathway were identified and potentially regulated by genetic engineering approaches to elevate specific lipids content. In addition, other studies have reported the implementation of strategies to increase lipid accumulation based on increasing acetyl-CoA/NADPH supply, enhancing photosynthetic efficiency, or blocking competing pathways. Furthermore, other efforts have used transcription factor engineering to simultaneously regulate multiple genes related to lipid accumulation. This review summarizes recent research about a variety of microalgae lipid biosynthesis pathways, and discusses multiple gene manipulation strategies that have been employed for specific lipid overproduction in industrial microalgae.


Subject(s)
Fatty Acids, Unsaturated/biosynthesis , Metabolic Engineering/methods , Microalgae/growth & development , Genetic Engineering , Lipid Metabolism , Microalgae/genetics , Microalgae/metabolism , Photosynthesis , Polyketide Synthases
8.
Bioresour Technol ; 271: 118-124, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30265951

ABSTRACT

The aim of this work was to reduce the algae-residue emission and make use of cane molasses as fermentation materials for docosahexaenoic acid (DHA) fermentaion by Schizochytrium sp., which further could cut the cost of DHA production. Algae-residue and cane molasses were respectively used as nitrogen and carbon sources to replace yeast extract and glucose. A significant DHA yield of 18.58 g/L was obtained using algae-residue, while cane molasses could not be used well as sole carbon source due to the presence of undesirable substance. A two-stage culture strategy with glucose followed by pretreated cane molasses as carbon source was developed, resulting in a final DHA yield of 15.22 g/L. This study therefore offers an economical and green strategy for DHA production by Schizochytrium sp.


Subject(s)
Canes , Docosahexaenoic Acids/biosynthesis , Stramenopiles/metabolism , Carbon/metabolism , Fermentation , Glucose/metabolism , Molasses , Nitrogen/metabolism
9.
Front Microbiol ; 9: 2788, 2018.
Article in English | MEDLINE | ID: mdl-30519220

ABSTRACT

The production of pneumocandin B0 is limited by feedback inhibition. Here, low-temperature adaptive laboratory evolution (ALE) was used to improve the production capacity of Glarea lozoyensis by enhancing its membrane permeability. After 50 cycles of ALE, the pneumocandin B0 production of the endpoint strain (ALE50) reached 2131 g/L, which was 32% higher than the starting strain (ALE0). ALE50 showed a changed fatty acid composition of the cell membrane, which-+h increased its permeability by 14%, which in turn increased the secretion ratio threefold. Furthermore, ALE50 showed increased intracellular proline and acetyl-CoA concentrations, superoxide dismutase (SOD), and catalase (CAT) activity, as well as total antioxidant capacity. The slight biomass decrease in ALE50 was accompanied by decreased isocitrate dehydrogenase (ICDH) and glucose-6-phosphate dehydrogenase (G6PDH) activity. Finally, a putative model of the accumulation and secretion of pneumocandin B0 in ALE50 was established. ALE is a promising method to release intracellular feedback inhibition.

10.
Biotechnol Biofuels ; 11: 272, 2018.
Article in English | MEDLINE | ID: mdl-30305845

ABSTRACT

Microalgae have drawn great attention as promising sustainable source of lipids and carotenoids. Their lipid and carotenoids accumulation machinery can be trigged by the stress conditions such as nutrient limitation or exposure to the damaging physical factors. However, stressful conditions often adversely affect microalgal growth and cause oxidative damage to the cells, which can eventually reduce the yield of the desired products. To overcome these limitations, two-stage cultivation strategies and supplementation of growth-promoting agents have traditionally been utilized, but developing new highly adapted strains is theoretically the simplest strategy. In addition to genetic engineering, adaptive laboratory evolution (ALE) is frequently used to develop beneficial phenotypes in industrial microorganisms during long-term selection under specific stress conditions. In recent years, many studies have gradually introduced ALE as a powerful tool to improve the biological properties of microalgae, especially for improving the production of lipid and carotenoids. In this review, strategies for the manipulation of stress in microalgal lipids and carotenoids production are summarized and discussed. Furthermore, this review summarizes the overall state of ALE technology, including available selection pressures, methods, and their applications in microalgae for the improved production of lipids and carotenoids.

11.
Front Microbiol ; 9: 2352, 2018.
Article in English | MEDLINE | ID: mdl-30364147

ABSTRACT

Pneumocandin B0 is an important antifungal drug precursor produced by filamentous fungus Glarea lozoyensis. The high broth viscosity of cultures of this organism results in lower oxygen solubility and higher energy consumption for agitation and aeration, which mostly caused by the morphologies of filamentous fungi in submerged culture. In this study, the effects of different seed medium nitrogen sources on morphology and fermentation behavior of G. lozoyensis were investigated, and cotton seed powder resulted in small, compact pellets. Moreover, pneumocandin B0 yield in Erlenmeyer flasks were increased by 22.9%. Furthermore, pneumocandin B0 yield in a 50-L fermenter reached 2,100 mg/L and the dissolved oxygen maintained above 30%. Additionally, activities of phosphofructokinase (PFK), isocitrate dehydrogenase (ICDH), glucose 6-phosphate dehydrogenase (G6PDH), and malic enzyme (ME) were increased by 87.5, 50, 41.6, and 10.7%, respectively. This study demonstrates the feasibility and advantages of using cotton seed powder for controlling the fungal morphology and improving the product yield in pneumocandin fermentations.

12.
AMB Express ; 8(1): 150, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30242564

ABSTRACT

Enhancing lipid productivity and reducing oxidative damage is essential for lipid overproduction in microalgae. In this study, addition of 20 mg/L fulvic acid (FA) resulted a 34.4% increase of lipid yield in Schizochytrium sp. Furthermore, the cooperative effect of FA and EDTA on cell growth and lipid production was investigated. The combined addition of 20 mg/L FA and 1.0 g/L EDTA yielded a maximal cell dry weight of 130.7 g/L and lipid productivity of 1.16 g/L/h, representing 36.4% and threefold increase over the non-supplemented group, respectively. Moreover, compared with the non-supplemented group, the combined addition strategy exhibited overall lower levels of reactive oxygen species and malondialdehyde, which accompanied with 66.7% and 81.9% higher superoxide dismutase and catalase activity, respectively. Furthermore, a 24.1-37.1% increase of malic enzyme and 19.4-25.2% decrease of phosphoenolpyruvate carboxylase activity was observed during the entire fermentation stage (0-108 h). Results suggested that the combined addition strategy not only enhanced lipid accumulation, but also prevented the lipid peroxidation.

13.
Biotechnol Biofuels ; 11: 249, 2018.
Article in English | MEDLINE | ID: mdl-30245741

ABSTRACT

BACKGROUND: Schizochytrium sp. is a promising strain for the production of docosahexaenoic acid (DHA)-rich oil and biodiesel, and has been widely used in the food additive and bioenergy industries. Oxygen is a particularly important environmental factor for cell growth and DHA synthesis. In general, higher oxygen supply favors lipid accumulation, but could lead to a reduction of the DHA percentage in total fatty acids in Schizochytrium sp. To tackle this problem, it is essential to understand the mechanisms regulating the response of Schizochytrium sp. to oxygen. In this study, we aimed to explore the acclimatization of this DHA producer to different oxygen supply conditions by examining the transcriptome changes. RESULTS: Two different fermentation processes, namely normal oxygen supply condition (shift agitation speeds from 400 rpm to 300 rpm) and high oxygen supply condition (constant agitation speeds: 400 rpm), were designed to study how the fermentation characteristics of Schizochytrium sp. HX-308 were affected by different oxygen supply conditions. The results indicated that high oxygen supply condition resulted in 49% and 37.5% improvement in the maximum cell dry weight (CDW) and total lipid concentration, respectively. However, the DHA percentage in total fatty acids decreased to 35%, which was 31.4% lower than that produced by normal oxygen supply condition. Moreover, transcriptome analysis was performed to explore the effect of the oxygen supply condition on genetic expression and metabolism. The results showed that glycolysis and pentose phosphate pathway metabolism-associated genes (hexokinase, phosphofructokinase, fructose-bisphosphate aldolase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase) were substantially upregulated in response to high oxygen supply, resulting in more NADPH was available for Schizochytrium. Specially, high oxygen supply condition also led to genes (Δ6 desaturase, Δ12 desaturase, FAS, ORFA, ORFB, and ORFC) involved in fatty acid biosynthesis upregulation. In addition, a transcriptional upregulation of catalase (CAT) became apparent under high oxygen supply condition, while superoxide dismutase (SOD) and ascorbate peroxidase (APX) were found to be down-regulated. CONCLUSIONS: This study is the first to investigate the differences of gene expression at different levels of oxygen availability in the DHA producer Schizochytrium. The results of transcriptome analyses indicated that high oxygen supply condition resulting in more NADPH and acetyl-CoA production for cell growth and lipid synthesis in Schizochytrium. Δ12 desaturase and ORFC showed higher expression levels at high oxygen supply condition, which might be the key regulators for enhancing fatty acid biosynthesis in the future. These results enrich the current knowledge regarding genetic expression and provide important information to enhance DHA production in Schizochytrium sp.

14.
Bioresour Technol ; 269: 32-39, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30149252

ABSTRACT

Docosahexaenoic acid (DHA) has wide-ranging benefits for normal development of the visual and nervous systems in infants. A sustainable source of DHA production through fermentation using Schizochytrium sp. has been developed. In this paper, we present the discovery of growth-uncoupled DHA production by Schizochytrium sp. and the development of corresponding kinetic models of fed-batch fermentations, which can be used to describe and predict the cell growth and substrate utilization as well as lipid and DHA production. Based on this kinetic model, a predictive model of multi-stage continuous fermentation process was established and used to analyze, optimize and design the process parameters. Optimal predicted processes of two-stage and three-stage continuous fermentation were developed and verified in lab-scale bioreactor based on the predicted process parameters. A successful three-stage continuous fermentation was achieved, which increased the lipid, DHA content and DHA productivity by 47.6, 64.3 and 97.1%, respectively, compared with two-stage continuous fermentation.


Subject(s)
Docosahexaenoic Acids/metabolism , Fermentation , Stramenopiles , Bioreactors , Kinetics
15.
Bioresour Technol ; 266: 482-487, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29990764

ABSTRACT

Fermentation wastewater (FW) and algal residue are major by-products of docosahexaenoic acid (DHA) fermentations utilizing Schizochytrium sp. In order to reduce production costs and environmental pollution, we explored the application of FW and algal-residue extract (AE) for DHA production. Components analysis showed that FW and AE contained some mineral elements and protein residues, respectively. When they were used for DHA fermentation, results showed that 20% replacement of fresh water by FW and 80% replacement of yeast extract nitrogen by AE reached DHA content of 22.23 g/L and 27.10 g/L, respectively. Furthermore, a novel medium that utilizes a mixture of FW and AE was applied for DHA fermentation, whereby the final DHA yield reached 28.45 g/L, 24.56% higher than conventional medium. The strategy of valorizing fermentation waste provides a new method for reducing the costs and reducing environmental pollution of microbial fermentations.


Subject(s)
Docosahexaenoic Acids/metabolism , Stramenopiles , Wastewater , Fermentation , Nitrogen
16.
Bioresour Technol ; 267: 438-444, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30032058

ABSTRACT

Lipid accumulation of Schizochytrium sp. can be induced by stress condition, but this stress-induction usually reduce cell growth and cause oxidative damage, which can eventually lower the lipid yield. Here, adaptive laboratory evolution (ALE) combined high salinity was performed to enhance the antioxidant system and lipid accumulation. The final strain ALE150, which was obtained after 150 days, showed a maximal cell dry weight (CDW) of 134.5 g/L and lipid yield of 80.14 g/L, representing a 32.7 and 53.31% increase over the starting strain, respectively. Moreover, ALE150 exhibited an overall higher total antioxidant capacity (T-AOC) and lower reactive oxygen species (ROS) levels than the starting strain. Furthermore, the regulatory mechanisms responsible for the improved performance of ALE150 were analyzed by transcriptomic analysis. Genes related to the antioxidant enzymes and central carbon metabolism were up-regulation. Moreover, the metabolic fluxes towards the fatty acid synthase (FAS) and polyketide synthase (PKS) pathways were also changed.


Subject(s)
Lipids/biosynthesis , Microalgae , Salinity , Oxidation-Reduction , Oxidative Stress
17.
Biotechnol Biofuels ; 11: 65, 2018.
Article in English | MEDLINE | ID: mdl-29563968

ABSTRACT

BACKGROUND: Schizochytrium sp. is a marine microalga with great potential as a promising sustainable source of lipids rich in docosahexaenoic acid (DHA). This organism's lipid accumulation machinery can be induced by various stress conditions, but this stress induction usually comes at the expense of lower biomass in industrial fermentations. Moreover, oxidative damage induced by various environmental stresses can result in the peroxidation of lipids, and especially polyunsaturated fatty acids, which causes unstable DHA production, but is often ignored in fermentation processes. Therefore, it is urgent to develop new production strains that not only have a high DHA production capacity, but also possess strong antioxidant defenses. RESULTS: Adaptive laboratory evolution (ALE) is an effective method for the development of beneficial phenotypes in industrial microorganisms. Here, a novel cooperative two-factor ALE strategy based on concomitant low temperature and high salinity was applied to improve the production capacity of Schizochytrium sp. Low-temperature conditions were used to improve the DHA content, and high salinity was applied to stimulate lipid accumulation and enhance the antioxidative defense systems of Schizochytrium sp. After 30 adaptation cycles, a maximal cell dry weight of 126.4 g/L and DHA yield of 38.12 g/L were obtained in the endpoint strain ALE-TF30, which was 27.42 and 57.52% higher than parental strain, respectively. Moreover, the fact that ALE-TF30 had the lowest concentrations of reactive oxygen species and malondialdehyde among all strains indicated that lipid peroxidation was greatly suppressed by the evolutionary process. Accordingly, the ALE-TF30 strain exhibited an overall increase of gene expression levels of antioxidant enzymes and polyketide synthases compared to the parental strain. CONCLUSION: This study provides important clues on how to overcome the negative effects of lipid peroxidation on DHA production in Schizochytrium sp. Taken together, the cooperative two-factor ALE process can not only increase the accumulation of lipids rich in DHA, but also prevent the loss of produced lipid caused by lipid peroxidation. The strategy proposed here may provide a new and alternative direction for the industrial cultivation of oil-producing microalgae.

18.
Bioresour Technol ; 250: 868-876, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29174352

ABSTRACT

As one of the most important environmental factors, oxygen is particularly important for synthesis of n-3 polyunsaturated fatty acids (n-3 PUFA) in microalgae. In general, a higher oxygen supply is beneficial for cell growth but obstructs PUFA synthesis. The generation of reactive oxygen species (ROS) under aerobic conditions, which leads to the peroxidation of lipids and especially PUFA, is an inevitable aspect of life, but is often ignored in fermentation processes. Irritability, microalgal cells are able to activate a number of anti-oxidative defenses, and the lipid profile of many species is reported to be altered under oxidative stress. In this review, the effects of oxygen on the PUFA synthesis, sources of oxidative damage, and anti-oxidative defense systems of microalgae were summarized and discussed. Moreover, this review summarizes the published reports on microalgal biotechnology involving direct/indirect oxygen regulation and new bioreactor designs that enable the improved production of PUFA.


Subject(s)
Fatty Acids, Unsaturated , Microalgae , Oxygen , Fatty Acids , Fatty Acids, Omega-3 , Oxidative Stress
19.
Appl Microbiol Biotechnol ; 101(20): 7435-7443, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28887634

ABSTRACT

In recent years, a variety of genetic tools have been developed and applied to various filamentous fungi, which are widely applied in agriculture and the food industry. However, the low efficiency of gene targeting has for many years hampered studies on functional genomics in this important group of microorganisms. The emergence of CRISPR/Cas9 genome-editing technology has sparked a revolution in genetic research due to its high efficiency, versatility, and easy operation and opened the door for the discovery and exploitation of many new natural products. Although the application of the CRISPR/Cas9 system in filamentous fungi is still in its infancy compared to its common use in E. coli, yeasts, and mammals, the deep development of this system will certainly drive the exploitation of fungal diversity. In this review, we summarize the research progress on CRISPR/Cas9 systems in filamentous fungi and finally highlight further prospects in this area.


Subject(s)
CRISPR-Cas Systems , Fungi/genetics , Gene Editing/methods , Genome, Fungal , Industrial Microbiology/methods , Agriculture/methods , Food Industry/methods
20.
Front Microbiol ; 8: 793, 2017.
Article in English | MEDLINE | ID: mdl-28507542

ABSTRACT

Microbial oils, which are mainly extracted from yeasts, molds, and algae, have been of considerable interest as food additives and biofuel resources due to their high lipid content. While these oleaginous microorganisms generally produce only small amounts of lipids under optimal growth conditions, their lipid accumulation machinery can be induced by environmental stresses, such as nutrient limitation and an inhospitable physical environmental. As common second messengers of many stress factors, reactive oxygen species (ROS) may act as a regulator of cellular responses to extracellular environmental signaling. Furthermore, increasing evidence indicates that ROS may act as a mediator of lipid accumulation, which is associated with dramatic changes in the transcriptome, proteome, and metabolome. However, the specific mechanisms of ROS involvement in the crosstalk between extracellular stress signaling and intracellular lipid synthesis require further investigation. Here, we summarize current knowledge on stress-induced lipid biosynthesis and the putative role of ROS in the control of lipid accumulation in oleaginous microorganisms. Understanding such links may provide guidance for the development of stress-based strategies to enhance microbial lipid production.

SELECTION OF CITATIONS
SEARCH DETAIL
...