Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Signal ; 120: 111218, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38734194

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and aggressive primary malignant human brain tumor. Although comprehensive therapies, including chemotherapy and radiotherapy following surgery, have shown promise in prolonging survival, the prognosis for GBM patients remains poor, with an overall survival rate of only 14.6 months. Chemoresistance is a major obstacle to successful treatment and contributes to relapse and poor survival rates in glioma patients. Therefore, there is an urgent need for novel strategies to overcome chemoresistance and improve treatment outcomes for human glioma patients. Recent studies have shown that the tumor microenvironment plays a key role in chemoresistance. Our study demonstrates that upregulation of HAS2 and subsequent hyaluronan secretion promotes glioma cell proliferation, invasion, and chemoresistance in vitro and in vivo through the c-myc pathway. Targeting HAS2 sensitizes glioma cells to chemotherapeutic agents. Additionally, we found that hypoxia-inducible factor HIF1α regulates HAS2 expression. Together, our findings provide insights into the dysregulation of HAS2 and its role in chemoresistance and suggest potential therapeutic strategies for GBM.


Subject(s)
Cell Proliferation , Drug Resistance, Neoplasm , Hypoxia-Inducible Factor 1, alpha Subunit , Proto-Oncogene Proteins c-myc , Up-Regulation , Humans , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Proto-Oncogene Proteins c-myc/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Animals , Hyaluronan Synthases/metabolism , Hyaluronan Synthases/genetics , Glioma/pathology , Glioma/metabolism , Glioma/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Mice, Nude , Gene Expression Regulation, Neoplastic , Mice , Hyaluronic Acid/metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics
2.
Bioresour Technol ; 399: 130611, 2024 May.
Article in English | MEDLINE | ID: mdl-38508282

ABSTRACT

Glucosylglycerate (R-2-O-α-D-glucopyranosyl-glycerate, GG) is a negatively charged compatible solution with versatile functions. Here, an artificial in vitro enzymatic cascade was designed to feasibly and sustainably produce GG from affordable starch and glycerol. First, Spirochaeta thermophila glucosylglycerate phosphorylase (GGP) was carefully selected because of its excellent heterologous expression, specific activity, and thermostability. The optimized two-enzyme cascade, consisting of alpha-glucan phosphorylase (αGP) and GGP, achieved a remarkable 81 % conversion rate from maltodextrin and D-glycerate. Scaling up this cascade resulted in a practical concentration of 58 g/L GG with a 62 % conversion rate based on the added D-glycerate. Additionally, the production of GG from inexpensive starch and glycerol in one-pot using artificial four-enzyme cascade was successfully implemented, which integrates alditol oxidase and catalase with αGP and GGP. Collectively, this sustainable enzymatic cascade demonstrates the feasibility of the practical synthesis of GG and has the potential to produce other glycosides using the phosphorylase-and-phosphorylase paradigm.


Subject(s)
Glycerol , Starch , Glucosides/metabolism , Phosphorylases/metabolism
3.
Int J Biol Macromol ; 260(Pt 2): 129641, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262552

ABSTRACT

Cellobionic acid (CBA), a kind of aldobionic acid, offers potential applications in the fields of pharmaceutical, cosmetic, food, and chemical industry. To tackle the high cost of the substrate cellobiose in CBA production using quinoprotein glucose dehydrogenase, this study developed a coenzyme-free and phosphate-balanced in vitro synthetic enzymatic biosystem (ivSEBS) to enable the sustainable CBA synthesis from cost-effective starch in one-pot via the CBA-synthesis module and gluconic acid-supply module. The metabolic fluxes of this artificial biosystem were strengthened using design-build-test-analysis strategy, which involved exquisite pathway design, meticulous enzyme selection, module validation and integration, and optimization of the key enzyme dosage. Under the optimized conditions, a remarkable concentration of 6.2 g/L CBA was achieved from initial 10 g/L maltodextrin with a starch-to-CBA molar conversion rate of 60 %. Taking into account that the biosystem simultaneously accumulated 3.6 g/L of gluconic acid, the maltodextrin utilization rate was calculated to be 93.3 %. Furthermore, a straightforward scaling-up process was performed to evaluate the industrial potential of this enzymatic biosystem, resulting in a yield of 21.2 g/L CBA from 50 g/L maltodextrin. This study presents an artificial ivSEBS for sustainable production of CBA from inexpensive starch, demonstrating an alternative paradigm for biomanufacturing of other aldobionic acids.


Subject(s)
Gluconates , Starch , Disaccharides/metabolism
4.
Plant Physiol ; 194(4): 2372-2386, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38096479

ABSTRACT

Stem cells are essential to plant growth and development. Through data mining, we identified five DEVIL-like (DVL) small peptide genes that are preferentially expressed in the quiescent center of Arabidopsis (Arabidopsis thaliana) root but whose functions are unknown. When overexpressed, these genes caused a dramatic decrease in root length and pleiotropic phenotypes in the shoot. No root-growth defect was observed in the single-gene mutants, but the quintuple mutant exhibited slightly longer roots than the wild type (WT). Through transcriptome analysis with DVL20-overexpressing plants, we found that many genes involved in abscisic acid (ABA) signaling were regulated by these peptides. Consistent with this finding, we demonstrated that, relative to the WT, DVL20-overexpressing plants were more tolerant whereas the quintuple mutant was more sensitive to ABA. Using RT-qPCR, we showed that ABA signaling-associated genes were affected in an opposite manner when the plants were grown in normal or ABA-containing medium. Strikingly, ectopic expression of ABA signaling genes such as PYRABACTIN RESISTANCE 1-LIKE (PYL) 4, 5, or 6 or suppression of HIGHLY ABA-INDUCED 2 (HAI2) and MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE 18 (MAPKKK18) not only largely rescued the root growth defects in DVL20-overexpressing plants in normal growth condition but also conferred tolerance to ABA. Based on these results, we propose that DVL1, 2, 5, 8 and 20 function redundantly in root stem-cell maintenance under abiotic stress, and this role is achieved via ABA signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Peptides/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism
5.
ACS Appl Mater Interfaces ; 15(28): 33288-33298, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37400422

ABSTRACT

Avoiding the low specificity of phototheranostic reagents at the tumor site is a major challenge in cancer phototherapy. Meanwhile, angiogenesis in the tumor is not only the premise of tumor occurrence but also the basis of tumor growth, invasion, and metastasis, making it an ideal strategy for tumor therapy. Herein, biomimetic cancer cell membrane-coated nanodrugs (mBPP NPs) have been prepared by integrating (i) homotypic cancer cell membranes for evading immune cell phagocytosis to increase drug accumulation, (ii) protocatechuic acid for tumor vascular targeting along with chemotherapy effect, and (iii) near-infrared phototherapeutic agent diketopyrrolopyrrole derivative for photodynamic/photothermal synergetic therapy. The mBPP NPs exhibit high biocompatibility, superb phototoxicity, excellent antiangiogenic ability, and double-trigging cancer cell apoptosis in vitro. More significantly, mBPP NPs could specifically bind to tumor cells and vasculature after intravenous injection, inducing fluorescence and photothermal imaging-guided tumor ablation without recurrence and side effects in vivo. The biomimetic mBPP NPs could cause drug accumulation at the tumor site, inhibit tumor neovascularization, and improve phototherapy efficiency, providing a novel avenue for cancer treatment.


Subject(s)
Nanoparticles , Nanostructures , Neoplasms , Photochemotherapy , Humans , Biomimetics , Nanoparticles/therapeutic use , Phototherapy , Neoplasms/pathology , Cell Line, Tumor
6.
J Integr Plant Biol ; 64(8): 1543-1559, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35665443

ABSTRACT

To identify novel regulators of stem cell renewal, we mined an existing but little explored cell type-specific transcriptome dataset for the Arabidopsis root. A member of the TGA family of transcription factors, TGA8, was found to be specifically expressed in the quiescent center (QC). Mutation in TGA8 caused a subtle root growth phenotype, suggesting functional redundancy with other TGA members. Using a promoter::HGFP transgenic approach, we showed that all TGA factors were expressed in the root, albeit at different levels and with distinct spatial patterns. Mutant analyses revealed that all TGA factors examined contribute to root growth by promoting stem cell renewal, meristem activity, and cell elongation. Combining transcriptome analyses, histochemical assays, and physiological tests, we demonstrated that functional redundancy exists among members of clades II and V or those in clades I and III. These two groups of TGA factors act differently, however, as their mutants responded to oxidative stress differently and quantitative reverse transcription polymerase chain reaction assays showed they regulate different sets of genes that are involved in redox homeostasis. Our study has thus uncovered a previously unrecognized broad role and a mechanistic explanation for TGA factors in root growth and development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Homeostasis , Meristem/metabolism , Oxidation-Reduction , Plant Roots/metabolism
7.
Front Microbiol ; 13: 839015, 2022.
Article in English | MEDLINE | ID: mdl-35464950

ABSTRACT

Gut microbiota plays an essential role in the development of rheumatoid arthritis (RA) and affects drug responses. However, the underlying mechanism remains elusive and urgent to elucidate to explore the pathology and clinical treatment of RA. Therefore, we selected methotrexate (MTX) as an example of RA drugs to explore the interactions between the gut microbiota and drug responses and obtain an in-depth understanding of their correlation from the perspective of the metabolic capability of gut microbiota on drug metabolism. We identified 2,654 proteins and the corresponding genes involved in MTX metabolism and then profiled their abundances in the gut microbiome datasets of four cohorts. We found that the gut microbiota harbored various genes involved in MTX metabolism in healthy individuals and RA patients. Interestingly, the number of genes involved in MTX metabolism was not significantly different between response (R) and non-response (NR) groups to MTX, but the gene composition in the microbial communities significantly differed between these two groups. Particularly, several models were built based on clinical information, as well as data on the gene, taxonomical, and functional biomarkers by using the random forest algorithm and then validated. Our findings provide bases for clinical management not only of RA but also other gut microbiome-related diseases. First, it suggests that the potential metabolic capability of gut microbiota on drug metabolism is important because they affect drug efficiency; as such, clinical treatment strategies should incorporate the gene compositions of gut microbial communities, in particular genes involved in drug metabolism. Second, a suitable model can be developed to determine hosts' responses to drugs before clinical treatment.

8.
Nat Commun ; 10(1): 560, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718489

ABSTRACT

Although Cas9 nucleases are remarkably diverse in microorganisms, the range of genomic sequences targetable by a CRISPR/Cas9 system is restricted by the requirement of a short protospacer adjacent motif (PAM) at the target site. Here, we generate a group of chimeric Cas9 (cCas9) variants by replacing the key region in the PAM interaction (PI) domain of Staphylococcus aureus Cas9 (SaCas9) with the corresponding region in a panel of SaCas9 orthologs. By using a functional assay at target sites with different nucleotide recombinations at PAM position 3-6, we identify several cCas9 variants with expanded recognition capability at NNVRRN, NNVACT, NNVATG, NNVATT, NNVGCT, NNVGTG, and NNVGTT PAM sequences. In summary, we provide a panel of cCas9 variants accessible up to 1/4 of all the possible genomic targets in mammalian cells.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/physiology , Biological Evolution , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/genetics , Flow Cytometry , HEK293 Cells , Humans , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Substrate Specificity
9.
Int J Med Mushrooms ; 17(5): 435-42, 2015.
Article in English | MEDLINE | ID: mdl-26082982

ABSTRACT

This study aimed to improve polysaccharide production by engineering the biosynthetic pathway in Ganoderma lucidum through the overexpression of the homologous UDP glucose pyrophosphorylase (UGP) gene. The effects of UGP gene overexpression on intracellular polysaccharide (IPS) content, extracellular polysaccharide (EPS) production, and transcription levels of 3 genes encoding the enzymes involved in polysaccharide biosynthesis, including phosphoglucomutase (PGM), UGP, and α-1,3-glucan synthase (GLS), were investigated. The maximum IPS content and EPS production in G. lucidum overexpressing the UGP gene were 24.32 mg/100 mg dry weight and 1.66 g/L, respectively, which were higher by 42% and 36% than those of the wild-type strain. The transcription levels of PGM, UGP, and GLS were up-regulated by 1.6, 2.6, and 2.4-fold, respectively, in the engineered strain, suggesting that increased polysaccharide biosynthesis may result from a higher expression of those genes.


Subject(s)
Polysaccharides/biosynthesis , Reishi/enzymology , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , Gene Expression Regulation, Fungal , Medicine, Traditional , Phylogeny , Reishi/genetics , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism , Up-Regulation
10.
Int J Med Mushrooms ; 16(2): 161-8, 2014.
Article in English | MEDLINE | ID: mdl-24941037

ABSTRACT

We report the construction of a plasmid, pJW-EXP, designed for the expression of homologous and heterologous genes in Ganoderma lucidum. pJW-EXP was generated from the plasmid pMD19-T by inserting the G. lucidum glyceraldehyde-3-phosphate dehydrogenase gene promoter, the G. lucidum iron-sulfur protein subunit of succinate dehydrogenase gene terminator and the homologous carboxin-resistance gene as selection marker. This expression plasmid can be efficiently transformed into Ganoderma through polyethylene glycol-mediated protoplast transformation. Southern blot analysis showed that most of the integrated DNA appeared as multiple copies in the genome. The applicability of the constructed plasmid was tested by expression of the truncated G. lucidum 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene that encodes the catalytic domain of HMGR. Overexpression of the truncated HMGR gene, which is a key gene in the biosynthetic pathway of the antitumor compounds, ganoderic acids, increased the transcription of the HMGR gene and enhanced ganoderic acid accumulation. pJW-EXP can serve as a useful tool in the genetic improvement and metabolic engineering of Ganoderma.


Subject(s)
Gene Expression , Plasmids/genetics , Reishi/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Dosage , Genetic Vectors/genetics , Genetic Vectors/metabolism , Plasmids/metabolism , Promoter Regions, Genetic , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Reishi/metabolism , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...