Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Med Rep ; 21(2): 549-556, 2020 02.
Article in English | MEDLINE | ID: mdl-31974605

ABSTRACT

The purpose of the present study was to explore aging­associated cardiac dysfunction and the possible mechanism by which swimming exercise modulates cardiac dysfunction in aged mice. Aged mice were divided into two groups: i) Aged mice; and ii) aged mice subjected to swimming exercises. Another cohort of 4­month­old male mice served as the control group. Cardiac structure and function in mice were analyzed using hematoxylin and eosin staining, and echocardiography. The levels of oxidative stress were determined by measuring the levels of superoxide dismutase, malondialdehyde and reactive oxygen species (ROS). Levels of the endoplasmic reticulum (ER) stress­related protein PKR­like ER kinase, glucose­regulated protein 78 and C/EBP homologous protein were determined to evaluate the level of ER stress. The aged group exhibited an abnormal cardiac structure and decreased cardiac function, both of which were ameliorated by swimming exercise. The hearts of the aged mice exhibited pronounced oxidative and ER stress, which were ameliorated by exercise, and was accompanied by the reactivation of myocardial cGMP and suppression of cGMP­specific phosphodiesterase type 5 (PDE5). The inhibition of PDE5 attenuated age­induced cardiac dysfunction, blocked ROS production and suppressed ER stress. An ER stress inducer abolished the beneficial effects of the swimming exercise on cardiac function and increased ROS production. The present study suggested that exercise restored cardiac function in mice with age­induced cardiac dysfunction by inhibiting oxidative stress and ER stress, and increasing cGMP­protein kinase G signaling.


Subject(s)
Aging/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Cyclic GMP/metabolism , Endoplasmic Reticulum Stress , Myocardium/pathology , Physical Conditioning, Animal , Swimming/physiology , Animals , Down-Regulation , Male , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Signal Transduction
2.
Peptides ; 111: 103-111, 2019 01.
Article in English | MEDLINE | ID: mdl-29689346

ABSTRACT

Exogenously administered B-type natriuretic peptide (BNP) has been shown to provide cardioprotection against various heart diseases. However, the underlying mechanisms remain elusive. This study explores whether BNP exerts its cardioprotection against hypoxia/reoxygenation (H/R) injury under high glucose/high fat (HG/HF) conditions in cardiac H9c2 cells and uncovers the underlying mechanisms. Our data revealed that BNP significantly increased the cell viability and decreased the release of lactate dehydrogenase (LDH) and creatine kinase (CK), with a maximal effect at the BNP concentration of 10-7 mol/L. In addition, by analyzing the activation of cleaved caspase-3 and by Annexin V-FITC/PI staining, we showed that BNP attenuated H/R-induced cell apoptosis in HG/HF conditions. Western blot analysis showed enhanced phosphorylation of protein kinase RNA (PKR)-like endoplastmic reticulum (ER) kinase (PERK) and eukaryotic initiation factor 2α (eIF2α)(one of the three main signaling pathways in endoplastmic reticulum (ER) stress), and increased expression of GRP78 and CHOP proteins (ER stress-related proteins) in H9c2 cells which underwent H/R in HG/HF conditions. Treatment with BNP or 8-Br-cGMP (an analog of cGMP) reversed this activation. However, this effect was significantly weakened by KT-5823, a selective cGMP-dependent protein kinase G (PKG) inhibitor. In addition, similar to BNP, treatment with a specific inhibitor of ER stress tauroursodeoxycholic acid (TUDCA) protected the cells against H/R injury exposed to HG/HF conditions. In conclusion, these findings demonstrated that BNP effectively protected cells against H/R injury under HG/HF conditions by inhibiting the ER stress via activation of the cGMP-PKG signaling pathway.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Natriuretic Peptide, Brain/pharmacology , Animals , Apoptosis/drug effects , Cell Line , Dietary Fats/adverse effects , Flow Cytometry , Glucose/adverse effects , Myocardial Reperfusion Injury/metabolism , Rats , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...