Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 44(23)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38688721

ABSTRACT

The mouse auditory organ cochlea contains two types of sound receptors: inner hair cells (IHCs) and outer hair cells (OHCs). Tbx2 is expressed in IHCs but repressed in OHCs, and neonatal OHCs that misexpress Tbx2 transdifferentiate into IHC-like cells. However, the extent of this switch from OHCs to IHC-like cells and the underlying molecular mechanism remain poorly understood. Furthermore, whether Tbx2 can transform fully mature adult OHCs into IHC-like cells is unknown. Here, our single-cell transcriptomic analysis revealed that in neonatal OHCs misexpressing Tbx2, 85.6% of IHC genes, including Slc17a8, are upregulated, but only 38.6% of OHC genes, including Ikzf2 and Slc26a5, are downregulated. This suggests that Tbx2 cannot fully reprogram neonatal OHCs into IHCs. Moreover, Tbx2 also failed to completely reprogram cochlear progenitors into IHCs. Lastly, restoring Ikzf2 expression alleviated the abnormalities detected in Tbx2+ OHCs, which supports the notion that Ikzf2 repression by Tbx2 contributes to the transdifferentiation of OHCs into IHC-like cells. Our study evaluates the effects of ectopic Tbx2 expression on OHC lineage development at distinct stages of either male or female mice and provides molecular insights into how Tbx2 disrupts the gene expression profile of OHCs. This research also lays the groundwork for future studies on OHC regeneration.


Subject(s)
Hair Cells, Auditory, Inner , Hair Cells, Auditory, Outer , T-Box Domain Proteins , Animals , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Mice , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Outer/metabolism , Female , Animals, Newborn , Cell Transdifferentiation/physiology , Cell Transdifferentiation/genetics , Male , Cochlea/metabolism , Cochlea/cytology , Mice, Inbred C57BL
2.
Development ; 150(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38078650

ABSTRACT

Cochlear inner hair cells (IHCs) are primary sound receptors, and are therefore a target for developing treatments for hearing impairment. IHC regeneration in vivo has been widely attempted, although not yet in the IHC-damaged cochlea. Moreover, the extent to which new IHCs resemble wild-type IHCs remains unclear, as is the ability of new IHCs to improve hearing. Here, we have developed an in vivo mouse model wherein wild-type IHCs were pre-damaged and nonsensory supporting cells were transformed into IHCs by ectopically expressing Atoh1 transiently and Tbx2 permanently. Notably, the new IHCs expressed the functional marker vGlut3 and presented similar transcriptomic and electrophysiological properties to wild-type IHCs. Furthermore, the formation efficiency and maturity of new IHCs were higher than those previously reported, although marked hearing improvement was not achieved, at least partly due to defective mechanoelectrical transduction (MET) in new IHCs. Thus, we have successfully regenerated new IHCs resembling wild-type IHCs in many respects in the damaged cochlea. Our findings suggest that the defective MET is a critical barrier that prevents the restoration of hearing capacity and should thus facilitate future IHC regeneration studies.


Subject(s)
Hair Cells, Vestibular , Hearing Loss , Mice , Animals , Hair Cells, Auditory, Inner , Cochlea/physiology , Hearing Loss/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics
4.
Natl Sci Rev ; 9(12): nwac156, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36687561

ABSTRACT

Atoh1 is essential for the development of both outer hair cells (OHCs) and inner hair cells (IHCs) in the mammalian cochlea. Whereas Ikzf2 is necessary for OHC development, the key gene required for IHC development remains unknown. We found that deletion of Tbx2 in neonatal IHCs led to their transdifferentiation into OHCs by repressing 26.7% of IHC genes and inducing 56.3% of OHC genes, including Ikzf2. More importantly, persistent expression of Tbx2 coupled with transient Atoh1 expression effectively reprogrammed non-sensory supporting cells into new IHCs expressing the functional IHC marker vGlut3. The differentiation status of these new IHCs was considerably more advanced than that previously reported. Thus, Tbx2 is essential for IHC development and co-upregulation of Tbx2 with Atoh1 in supporting cells represents a new approach for treating deafness related to IHC degeneration.

5.
Elife ; 102021 09 03.
Article in English | MEDLINE | ID: mdl-34477109

ABSTRACT

Mammalian cochlear outer hair cells (OHCs) are essential for hearing. Severe hearing impairment follows OHC degeneration. Previous attempts at regenerating new OHCs from cochlear supporting cells (SCs) have been unsuccessful, notably lacking expression of the key OHC motor protein, Prestin. Thus, regeneration of Prestin+ OHCs represents a barrier to restore auditory function in vivo. Here, we reported the successful in vivo conversion of adult mouse cochlear SCs into Prestin+ OHC-like cells through the concurrent induction of two key transcriptional factors known to be necessary for OHC development: Atoh1 and Ikzf2. Single-cell RNA sequencing revealed the upregulation of 729 OHC genes and downregulation of 331 SC genes in OHC-like cells. The resulting differentiation status of these OHC-like cells was much more advanced than previously achieved. This study thus established an efficient approach to induce the regeneration of Prestin+ OHCs, paving the way for in vivo cochlear repair via SC transdifferentiation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cochlea/cytology , Hair Cells, Auditory/physiology , Ikaros Transcription Factor/metabolism , RNA, Untranslated/metabolism , Sulfate Transporters/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , CRISPR-Cas Systems , Cell Differentiation , Computational Biology , Estrogen Antagonists/pharmacology , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Gene Knock-In Techniques , Ikaros Transcription Factor/genetics , Mice , Microscopy, Electron, Scanning , Molecular Motor Proteins/genetics , Molecular Motor Proteins/metabolism , RNA/genetics , RNA/metabolism , RNA, Untranslated/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Sulfate Transporters/genetics , Tamoxifen/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...