Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; : 131106, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004108

ABSTRACT

The manganese(Mn) redox cycling system in this work was created by combining Mn(IV)-reducing bacteria MFG10 with Mn(II)-oxidizing bacteria HY129. The biomanganese oxides (BMO) generated by strain HY129 were transformed by strain MFG10 to Mn(II), finishing the Mn redox cycling, in which nitrate (NO3--N) was converted to nitrite, which was further reduced to nitrogen gas. The system could achieve 85.7 % and 98.8 % elimination efficiencies of Mn(ⅠⅠ) and NO3--N, respectively, at Mn(ⅠⅠ) = 20.0 mg/L, C/N = 2.0, pH = 6.5, and NO3--N = 16.0 mg/L. The removal of bisphenol A (BPA) and zinc (Zn(II)) at 36 h reached 91.7 % and 89.7 % under the optimal condition, respectively. Furthermore, the Mn redox cycling system can reinforce the metabolic activity and electron transfer activity of microorganisms. The findings showed that the adsorption by bioprecipitation throughout the Mn cycling was responsible for the elimination of Zn(II) and BPA.

2.
J Hazard Mater ; 475: 134922, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38885589

ABSTRACT

Effective treatment of industrial wastewater containing complex pollutants, such as nitrate (NO3--N) and organic pollutants, remains a significant challenge to date. Here, a strain Nocardioides sp. ZS2 with denitrification and degradation of p-nitrophenol (PNP) was isolated and its culture conditions were optimized by kinetic analysis. Hydrophilic sponge carriers were prepared using polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), and chitosan (CS) to construct bioreactors. Furthermore, to further enhance the PNP degradation and denitrification performance of bioreactors, Pseudomonas stutzeri GF2 with denitrification capability was introduced. The results revealed that the removal efficiencies of PNP and NO3--N reached 97.9 % and 91.9 %, respectively, when hydraulic retention time (HRT) of 6 h, C/N of 2.0, and pH of 6.5. The bioreactor exhibited stable denitrification performance even with fluctuations in the influent PNP concentration. The potential functional prediction results revealed that the abundance of amino acids, fatty acids, and carbohydrates increased as the influent C/N decreased, reflecting a tendency of the microbial community to adjust carbon source utilization to maintain cell growth, metabolic balance, and resist adverse C/N environments. This research provides new insights into the effective removal of organic pollutants and NO3--N in wastewater treatment.


Subject(s)
Bioreactors , Denitrification , Hydrophobic and Hydrophilic Interactions , Nitrophenols , Water Pollutants, Chemical , Nitrophenols/metabolism , Nitrophenols/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Chitosan/chemistry , Pseudomonas stutzeri/metabolism , Polyvinyl Alcohol/chemistry , Carboxymethylcellulose Sodium/chemistry , Carboxymethylcellulose Sodium/metabolism , Biodegradation, Environmental , Nitrates/metabolism , Wastewater/chemistry , Actinobacteria/metabolism , Waste Disposal, Fluid/methods
3.
Chemosphere ; 350: 141156, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211799

ABSTRACT

The co-existence of heavy metals and nitrate (NO3--N) pollutants in wastewater has been a persistent global concern for a long time. A strain LYF26, which can remove NO3--N, calcium (Ca(II)), and cadmium (Cd(II)) simultaneously, was isolated to explore the properties and mechanisms of synergistic contaminants removal. Different conditions (Cd(II) and Ca(II) concentrations and pH) were optimized by Zero-, Half-, and First-order kinetic analyses to explore the environmental parameters for the optimal effect of strain LYF26. Results of the kinetic analyses revealed that the optimal culture conditions for strain LYF26 were pH of 6.5, Cd(II) and Ca(II) concentrations of 3.00 and 180.00 mg L-1, accompanied by Ca(II), Cd(II), and NO3--N efficiencies of 53.10%, 90.03%, and 91.45%, respectively. The removal mechanisms of Cd(II) using strain LYF26 as a nucleation template were identified as biomineralization, lattice substitution, and co-precipitation. The differences and changes of dissolved organic matter during metabolism were analyzed and the results demonstrated that besides the involvement of extracellular polymeric substances in the precipitation of Cd(II) and Ca(II), the high content of humic acid-like species revealed a remarkable contribution to the denitrification process. This study is hopeful to contribute a theory for further developing microbially induced calcium precipitation used to treat complex polluted wastewater.


Subject(s)
Cadmium , Nitrates , Cadmium/metabolism , Nitrates/metabolism , Calcium , Kinetics , Pseudomonas/metabolism , Wastewater , Denitrification , Calcium, Dietary
4.
Bioresour Technol ; 393: 130161, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38065515

ABSTRACT

In the present study, an immobilized bioreactor was established to remove ammonia (NH4+-N), phosphate (PO43--P), and phenol using composite mycelium spheres (CMP) as the immobilization material in combination with Pseudomonas sp. Y1. Under optimal operating conditions, the bioreactor achieved 98.07, 91.71, and 92.57 % removal of NH4+-N, PO43--P, and phenol, respectively. The results showed that the bioreactor removed PO43--P by biomineralization and co-precipitation. Phenol removal relied on a Fenton-like reaction achieved by CMP-induced quinone redox cycling. High-throughput sequencing analysis and functional gene prediction indicated that Pseudomonas was the dominant genus and that the bioreactor had much potential for nitrogen removal, respectively. In addition, phenol affected the performance of functional genes and the associated enzymes, which influenced the nitrogen metabolism process in the bioreactor. This work serves as a guideline for the development of more stable and sustainable composite pollution removal technologies and fungal-bacterial symbiotic systems.


Subject(s)
Denitrification , Microbiota , Nitrification , Ammonia , Wastewater , Phosphorus , Waste Disposal, Fluid/methods , Phenol , Bioreactors , Pseudomonas/metabolism , Nitrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...