Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(10): 13176-13185, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36868558

ABSTRACT

Electrocatalytic hydrogenation (ECH) of oxalic acid (OX) to produce glycolic acid (GA), an important building block of biodegradable polymers as well as application in various branches of chemistry, has attracted extensive attention in the industry, while it still encounters challenges of low reaction rate and selectivity. Herein, we reported a cation adsorption strategy to realize the efficient ECH of OX to GA by adsorbing Al3+ ions on an anatase titanium dioxide (TiO2) nanosheet array, achieving 2-fold enhanced GA productivity (1.3 vs 0.65 mmol cm-2 h-1) with higher Faradaic efficiency (FE) (85 vs 69%) at -0.74 V vs RHE. We reveal that the Al3+ adatoms on TiO2 both act as electrophilic adsorption sites to enhance the carbonyl (C═O) adsorption of OX and glyoxylic acid (intermediate) and also promote the generation of reactive hydrogen (H*) on TiO2, thus promoting the reaction rate. This strategy is demonstrated effective for different carboxylic acids. Furthermore, we realized the coproduction of GA at the bipolar of a H-type cell by pairing ECH of OX (at cathode) and electrooxidation of ethylene glycol (at anode), demonstrating an economical manner with maximum electron economy.

2.
ACS Appl Mater Interfaces ; 13(2): 2530-2537, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33412851

ABSTRACT

Single-atom catalysts (SACs) have great potential to revolutionize heterogeneous catalysis, enabling fast and direct construction of desired products. Given their notable promise, a general and scalable strategy to access these catalyst systems is highly desirable. Herein, we describe a straightforward and efficient thermal atomization strategy to create atomically dispersed palladium atoms anchored on a nitrogen-doped carbon shell over an SBA-15 support. Their presence was confirmed by spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurement. The nitrogen-containing carbon shells provide atomic diffusion sites for anchoring palladium atoms emitted from palladium nanoparticles. This catalyst showed exceptional efficiency in selective hydrogenation of phenylacetylene and other types of alkynes. Importantly, it showed excellent stability, recyclability, and sintering-resistant ability. This approach can be scaled up with comparable catalytic activity. We anticipate that this work may lay the foundation for rapid access to high-quality SACs that are amenable to large-scale production for industrial applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...