Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(24): 11393-11405, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38842044

ABSTRACT

In this research, a range of Pt/CeO2 catalysts featuring varying Pt-O-Ce bond contents were developed by modulating the oxygen vacancies of the CeO2 support for toluene abatement. The Pt/CeO2-HA catalyst generated a maximum quantity of Pt-O-Ce bonds (possessed the strongest metal-support interaction), as evidenced by the visible Raman results, which demonstrated outstanding toluene catalytic performance. Additionally, the UV Raman results revealed that the strong metal-support interaction stimulated a substantial increase in oxygen vacancies, which could facilitate the activation of gaseous oxygen to generate abundant reactive oxygen species accumulated on the Pt/CeO2-HA catalyst surface, a conclusion supported by the H2-TPR, XPS, and toluene-TPSR results. Furthermore, the results from quasi-in situ XPS, in situ DRIFTS, and DFT indicated that the Pt/CeO2-HA catalyst with a strong metal-support interaction led to improved mobility of reactive oxygen species and lower oxygen activation energies, which could transfer a large number of activated reactive oxygen species to the reaction interface to participate in the toluene oxidation, resulting in the relatively superior catalytic performance. The approach of tuning the metal-support interaction of catalysts offers a promising avenue to develop highly active catalysts for toluene degradation.

2.
J Colloid Interface Sci ; 673: 746-755, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38905996

ABSTRACT

To clarify the key role of oxygen vacancy defects on enhancing the oxidative activity of the catalysts, metal-organic frameworks (MOFs) derived MnOX catalysts with different morphologies and oxygen vacancy defects were successfully prepared using a facile in-situ self-assembly strategy with different alkali moderators. The obtained morphologies included three-dimensional (3D) triangular cone stacked MnOX hollow sphere (MnOX-H) and 3D nanoparticle stacked MnOX nanosphere (MnOX-N). Compared to MnOX-N, MnOX-H exhibited higher activity for the oxidation of toluene (T90 = 226 °C). This was mainly due to the large number of oxygen vacancy defects and Mn4+ species in the MnOX-H catalyst. In addition, the hollow structure of MnOX-H not only facilitated toluene adsorption and activation of toluene and also provided more active sites for toluene oxidation. Reaction mechanism studies showed that the conversion of toluene to benzoate could be realized over MnOX-H catalyst during toluene adsorption at room temperature. In addition, abundant oxygen vacancy defects can accelerate the activated oxidation of toluene and the formation of oxidation products during toluene oxidation.

3.
Angew Chem Int Ed Engl ; 62(50): e202313868, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37899658

ABSTRACT

Solar-to-chemical energy conversion under weak solar irradiation is generally difficult to meet the heat demand of CO2 reduction. Herein, a new concentrated solar-driven photothermal system coupling a dual-metal single-atom catalyst (DSAC) with adjacent Ni-N4 and Fe-N4 pair sites is designed for boosting gas-solid CO2 reduction with H2 O under simulated solar irradiation, even under ambient sunlight. As expected, the (Ni, Fe)-N-C DSAC exhibits a superior photothermal catalytic performance for CO2 reduction to CO (86.16 µmol g-1 h-1 ), CH4 (135.35 µmol g-1 h-1 ) and CH3 OH (59.81 µmol g-1 h-1 ), which are equivalent to 1.70-fold, 1.27-fold and 1.23-fold higher than those of the Fe-N-C catalyst, respectively. Based on theoretical simulations, the Fermi level and d-band center of Fe atom is efficiently regulated in non-interacting Ni and Fe dual-atom pair sites with electronic interaction through electron orbital hybridization on (Ni, Fe)-N-C DSAC. Crucially, the distance between adjacent Ni and Fe atoms of the Ni-N-N-Fe configuration means that the additional Ni atom as a new active site contributes to the main *COOH and *HCO3 dissociation to optimize the corresponding energy barriers in the reaction process, leading to specific dual reaction pathways (COOH and HCO3 pathways) for solar-driven photothermal CO2 reduction to initial CO production.

4.
Polymers (Basel) ; 15(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37571148

ABSTRACT

Geopolymers can be used as a thermally insulated material because of their considerable porosity, whereas the combined effect of various modifying agents on their heat-insulating properties remains unexplored. Here, orthogonal experiments were carried out to evaluate the thermal insulation performance of fly ash geopolymer modified by phenolic resin, silica aerogel, and hydrogen peroxide. Moreover, variance analysis and range analysis were applied to estimate the influence of modifying agents on the thermal insulation performance of the geopolymer. The results demonstrate that the thermal conductivity of fly ash geopolymer significantly reduces (from 0.48 W/m·K to 0.12 W/m·K) due to the combined effect of the three modifying agents. Based on the variance analysis and range analysis, the optimum thermal conductivity ultimately reaches 0.08 W/m·K via a best composition scheme of the three modifying agents. Moreover, phenolic resin can facilitate the formation of a network structure and increase the porosity of micron pores (>1 µm). Hydrogen peroxide can be decomposed into O2 in an alkaline environment and leave large-diameter pores (>1 µm) during curing. Some silica aerogel is embedded in the geopolymer matrix as microspheres with extremely low thermal conductivity, whereas the rest of the silica aerogel may react with the alkali activator to form water, and subsequently leaves pores (>1 µm) after evaporation of water during the curing. In addition, a newly modified Maxwell-Euchen model using iterative calculation and considering the Knudsen effect (pores of micron or even nanometer scale) is proposed and validated by the experimental data. The foamed geopolymer in this research can be used as a reference for building insulation layer design. This research unravels phenolic resin-, silica aerogel-, and hydrogen peroxide-influenced thermal insulation mechanisms of geopolymer that may have impacts on deployment of a thermally insulating material in the construction field.

5.
Chemosphere ; 334: 138995, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37211160

ABSTRACT

Increasing the contact efficiency and improving the intrinsic activity are two effective strategies to obtain efficient catalysts for soot combustion. Herein, the electrospinning method is used to synthesize fiber-like Ce-Mn oxide with a strong synergistic effect. The slow combustion of PVP in precursors and highly soluble manganese acetate in spinning solution facilitates the formation of fibrous Ce-Mn oxides. The fluid simulation clearly indicates that the slender and uniform fibers provide more interwoven macropores to capture soot particles than the cubes and spheres do. Accordingly, electrospun Ce-Mn oxide exhibits better catalytic activity than reference catalysts, including Ce-Mn oxides by co-precipitation and sol-gel methods. The characterizations suggest that Mn3+ substitution into fluorite-type CeO2 enhances the reducibility through the acceleration of Mn-Ce electron transfer, improves the lattice oxygen mobility by weakening the Ce-O bonds, and induces oxygen vacancies for the activation of O2. The theoretical calculation reveals that the release of lattice oxygen becomes easy because of a low formation energy of oxygen vacancy, while the high reduction potential is beneficial for the activation of O2 on Ce3+-Ov (oxygen vacancies). Due to above Ce-Mn synergy, the CeMnOx-ES shows more active oxygen species and higher oxygen storage capacity than CeO2-ES and MnOx-ES. The theoretical calculation and experimental results suggest that the adsorbed O2 is more active than lattice oxygen and the catalytic oxidation mainly follows the Langmuir-Hinshelwood mechanism. This study indicates that electrospinning is a novel method to obtain efficient Ce-Mn oxide.


Subject(s)
Cerium , Oxides , Oxides/chemistry , Soot/chemistry , Cerium/chemistry , Oxidation-Reduction , Catalysis , Oxygen
6.
Chemosphere ; 279: 130658, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34134427

ABSTRACT

In this work, a series of spindle-like CeO2 supports with different contents of surface oxygen vacancies were fabricated by an in-situ atmosphere thermal pyrolysis method. Due to the unique surface physicochemical properties of the modified CeO2 supports, the interaction between Pt and CeO2 can be regulated during the synthesis of the Pt/CeO2 catalyst. The abundant oxygen vacancies on the CeO2 support could preferentially trap Pt2+ ions in solution during the Pt impregnation process and enhance the Pt-CeO2 interaction in the subsequent reduction process, which results in the strongest Pt-O-Ce bonds formed on the PCH catalysts successfully (0.6% Pt loading on the CH support, which generated by thermal pyrolysis of Ce(OH)CO3 under H2 atmosphere). The strong Pt-O-Ce bond would trigger abundant surface oxygen species generated and enhanced the lattice oxygen species transfer from CeO2 supports to Pt nanoparticles. It was crucial to boosting the toluene catalytic activity. Therefore, the PCH catalyst exhibits the highest activity for toluene oxidation (T10 = 120 °C, T50 = 138 °C, and T90 = 150 °C with WHSV = 60,000 mL g-1 h-1) and remarkable durability and water resistance among all catalysts. We also conclude that the Pt-O-Ce bond may be the active site for toluene oxidation by calculating the turnover frequencies (TOFPt-O-Ce) value for all Pt/CeO2 catalysts. Moreover, the DFT calculation indicates that the Pt/CeO2 catalyst with a strong Pt-O-Ce bond possesses the lowest oxygen absorption energy and higher CO tolerance ability, which leads to excellent catalytic performance for toluene and CO catalytic oxidation.


Subject(s)
Cerium , Atmosphere , Catalysis , Pyrolysis , Toluene
7.
Chemosphere ; 262: 127738, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32763575

ABSTRACT

A Pt-Co3O4 catalyst named Pt-Co(OH)2-O was prepared by metal-organic templates (MOTs) conversion and used for catalytic oxidation of toluene. Through the conversion, the morphology of catalysts transformed from rhombic dodecahedron to nanosheet and the coated Pt nanoparticles (NPs) were more exposed. The Binding energy shift in XPS test indicates that the strong metal-support strong interaction (SMSI) has enhanced, and the physicochemical changes caused by it are characterized by other techniques. At the same time, Pt-Co(OH)2-O showed the best catalytic performance (T50 = 157 °C, T90 = 167 °C, Ea = 40.85 kJ mol-1, TOFPt = 2.68 × 10-3 s-1) and good stability. In addition, the in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) studies have shown that because SMSI weakened the Co-O bond, the introduction of Pt NPs can make the migration of oxygen in the catalyst easier. The change of binding energy change and the content of various species in the quasi in situ XPS experiment further confirmed that the Pt-Co(OH)2-O catalyst has stronger SMSI, resulting in its stronger electron transfer ability and oxygen migration ability, which is conducive to catalytic reactions. This work provides new ideas for the development of supported catalysts and provides a theoretical reference for the relevant verification of SMSI.


Subject(s)
Cobalt/chemistry , Metal Nanoparticles/chemistry , Oxides/chemistry , Toluene/chemistry , Catalysis , Environmental Pollutants/chemistry , Oxidation-Reduction , Oxygen/chemistry , Photoelectron Spectroscopy , Platinum/chemistry , Spectroscopy, Fourier Transform Infrared
8.
Chemosphere ; 247: 125860, 2020 May.
Article in English | MEDLINE | ID: mdl-32069710

ABSTRACT

Herein, CeO2 catalysts with nanotube, nanobelt, and wire-in-nanotube morphologies were successfully fabricated by a facile single spinneret electrospinning technique. And catalytic activity of these electrospun CeO2 nanomaterials were evaluated by toluene catalytic combustion reaction. Among the three morphologies of CeO2 catalysts, CeO2 nanobelt (CeO2-NB) presented the best toluene catalytic combustion performance (T90% = 230 °C) at WHSV = 60,000 mL g-1 h-1, also exhibited the lowest activation energy (Ea = 80.2 kJ/mol). Based on the characterization by TEM, XRD, BET, SEM, XPS, Raman spectroscopy, H2-TPR, and O2-TPD results, the high catalytic activity of CeO2-NB catalyst was attributed to its porous nanobelt morphology with larger specific surface area and the abundance of surface oxygen vacancies. Furthermore, the CeO2-NB catalysts presented an excellent durability by longtime on-stream test (as well as presence of 5% vol. water vapor), suggesting its great potential for practical air pollution control application.


Subject(s)
Cerium/chemistry , Nanostructures/chemistry , Toluene/chemistry , Air Pollution/prevention & control , Catalysis , Nanotubes/chemistry , Oxygen/chemistry , Porosity , Volatile Organic Compounds
9.
J Environ Sci (China) ; 75: 136-144, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30473278

ABSTRACT

Herein, we reported the synthesis of well-defined Co3O4 nanoarrays (NAs) supported on a monolithic three-dimensional macroporous nickel (Ni) foam substrate for use in high-efficiency CO oxidation. The monolithic Co3O4 NAs catalysts were obtained through a generic hydrothermal synthesis route with subsequent calcination. By controlling the reaction time, solvent polarity and deposition agent, these Co3O4 NAs catalysts exhibited various novel morphologies (single or hybrid arrays), whose physicochemical properties were further characterized by using several analytical techniques. Based on the catalytic and characterization analyses, it was found that the Co3O4 NAs-6 catalyst with nanobrush and nanomace arrays displayed enhanced catalytic activity for CO oxidation, achieving an efficient 100% CO oxidation conversion at a gas hourly space velocity (GHSV) 10,000hr-1 and 150°C with long-term stability. Compared with the other Co3O4 NAs catalysts, it had the highest abundance of surface-adsorbed oxygen species, excellent low-temperature reducibility and was rich in surface-active sites (Co3+/Co2+=1.26).


Subject(s)
Carbon Monoxide/chemistry , Cobalt/chemistry , Models, Chemical , Nickel/chemistry , Oxides/chemistry , Adsorption , Oxidation-Reduction
10.
J Hazard Mater ; 364: 571-580, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30388641

ABSTRACT

Herein, a series of distinctively monolithic catalysts were first synthesized by decorating leaf-like Co-ZIF-L derivatives on Co2AlO4 coral-like microspheres from CoAl layered double hydroxides (LDHs), which were coated on three-dimensional porous Ni foam. As a proof of concept application, toluene was chosen as a probe molecule to evaluate their catalytic performances over the as-synthesized catalysts. As a result, the L-12 sample derived from Co2AlO4@Co-Co LDHs displayed an excellent catalytic performance, cycling stability and long-term stability for toluene oxidation (T99 = 272 °C, 33 °C lower than that of Co2AlO4 sample), where leaf-like Co-ZIF-L served as a sacrificial template to synthesize Co-Co LDHs. The improved catalytic performance was attributed to its distinctive structure, in which leaf-like Co-ZIF-L derivatives on Co2AlO4 resulted in its higher specific surface area, lower-temperature reducibility, rich surface oxygen vacancy and high valence Co3+ species. This work thus demonstrates a feasible strategy for the design and fabrication of hybrid LDHs/ZIFs-derived composite architectures, which is expected to construct other novel monolithic catalysts with hierarchical structures for other potential applications.

11.
Nanoscale ; 10(16): 7746-7758, 2018 Apr 26.
Article in English | MEDLINE | ID: mdl-29658017

ABSTRACT

A generic hydrothermal synthesis route has been successfully designed and utilized to in situ grow highly ordered Co3O4 nanoarray (NA) precursors on Ni substrates, forming a series of Co3O4 nanoarray-based monolithic catalysts with subsequent calcination. The morphology evolution of Co3O4 nanostructures which depends upon the reaction time, with and without CTAB or NH4F is investigated in detail, which is used to further demonstrate the growth mechanism of Co3O4 nanoarrays with different morphologies. CO is chosen as a probe molecule to evaluate the catalytic performance over the synthesized Co-based oxide catalysts, and the effect of morphological transformation on the catalytic activity is further confirmed via using TEM, H2-TPR, XPS, Raman spectroscopy and in situ Raman spectroscopy. As a proof of concept application, core-shell Co3O4 NAs-8 presenting hierarchical nanosheets@nanoneedle arrays with a low density of nanoneedles exhibits the highest catalytic activity and long-term stability due to its low-temperature reducibility, the lattice distortion of the spinel structure and the abundance of surface-adsorbed oxygen (Oads). It is confirmed that CO oxidation on the surface of Co3O4 can proceed through the Langmuir-Hinshelwood mechanism via using in situ Raman spectroscopy. It is expected that the in situ synthesis of well-defined Co3O4 monolithic catalysts can be extended to the development of environmentally-friendly and highly active integral materials for practical industrial catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...