Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 11: 1327466, 2023.
Article in English | MEDLINE | ID: mdl-38250324

ABSTRACT

Blood has an important role in the healthcare system, particularly in blood transfusions and immunotherapy. However, the occurrence of outbreaks of infectious diseases worldwide and seasonal fluctuations, blood shortages are becoming a major challenge. Moreover, the narrow specificity of immune cells hinders the widespread application of immune cell therapy. To address this issue, researchers are actively developing strategies for differentiating induced pluripotent stem cells (iPSCs) into blood cells in vitro. The establishment of iPSCs from terminally differentiated cells such as fibroblasts and blood cells is a straightforward process. However, there is need for further refinement of the protocols for differentiating iPSCs into immune cells and red blood cells to ensure their clinical applicability. This review aims to provide a comprehensive overview of the strategies and challenges facing the generation of iPSC-derived immune cells and red blood cells.

2.
Exp Ther Med ; 3(5): 818-822, 2012 May.
Article in English | MEDLINE | ID: mdl-22969975

ABSTRACT

Methyl parathion, a highly cytotoxic insecticide, has been used in agricultural pest control for several years. The present study investigated the protective effect of sodium aescinate (SA, the sodium salt of aescin) against liver injury induced by methyl parathion. Forty male Sprague-Dawley rats were randomly divided into 5 groups of 8 animals: the control group; the methyl parathion (15 mg/kg) poisoning (MP) group; and the MP plus SA at doses of 0.45, 0.9 and 1.8 mg/kg groups. Alanine aminotransferase (ALT), aspartate aminotransferase (AST) and acetylcholinesterase (AChE) in the plasma were assayed. Nitric oxide (NO) and antioxidative parameters were measured. Histopathological examination of the liver was also performed. The results revealed that SA had no effect on AChE. Treatment with SA decreased the activities of ALT and AST, and the levels of malondialdehyde and NO. Treatment with SA also increased the level of glutathione and the activities of superoxide dismutase and glutathione peroxidase. SA administration also ameliorated liver injury induced by methyl parathion poisoning. The findings indicate that SA protects against liver injury induced by methyl parathion and that the mechanism of action is related to the antioxidative and anti-inflammatory effects of SA.

3.
Hum Exp Toxicol ; 30(10): 1584-91, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21177729

ABSTRACT

Methyl parathion (MP) is a high venenosus insecticide. It has been used in pest control of agriculture for several years. The present study is performed to investigate the protective effect of sodium aescinate (SA) on lung injury induced by MP. Forty male Sprague-Dawley rats are randomly divided into five groups, with 8 animals in each group: control group, MP administration group, MP plus SA at doses of 0.45 mg/kg, 0.9 mg/kg and 1.8 mg/kg groups. Acetylcholinesterase (AChE) activity and nitric oxide (NO) level in plasma, myeloperoxidase (MPO) activity, NO level, and antioxidative parameters in lung tissue are assayed. Histopathological examination of lung is also performed. The results show that SA has no effect on AChE. Treatment with SA decreases the activity of MPO in lung and the level of NO in plasma and lung. The level of malondialdehyde in lung is decreased after SA treatments. SA increases the activities of superoxide dismutase, glutathione peroxidase and the content of glutathione in lung. SA administration also ameliorates lung injury induced by MP. The findings indicate that SA could protect lung injury induced by MP and the mechanism of action is related to the anti-inflammatory and anti-oxidative effect of SA.


Subject(s)
Escin/pharmacology , Insecticides/toxicity , Lung Injury/drug therapy , Methyl Parathion/toxicity , Protective Agents/pharmacology , Animals , Cholinesterase Inhibitors/toxicity , Drugs, Chinese Herbal/pharmacology , Escin/chemistry , Glutathione/metabolism , Lung Injury/blood , Lung Injury/pathology , Male , Nitric Oxide/metabolism , Oxidoreductases/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...