Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
BMC Health Serv Res ; 24(1): 627, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745226

ABSTRACT

BACKGROUND: The public health service capability of primary healthcare personnel directly affects the utilization and delivery of health services, and is influenced by various factors. This study aimed to examine the status, factors, and urban-rural differences of public health service capability among primary healthcare personnel, and provided suggestions for improvement. METHODS: We used cluster sampling to survey 11,925 primary healthcare personnel in 18 regions of Henan Province from 20th to March 31, 2023. Data encompassing demographics and public health service capabilities, including health lifestyle guidance, chronic disease management, health management of special populations, and vaccination services. Multivariable regression analysis was employed to investigate influencing factors. Propensity Score Matching (PSM) quantified urban-rural differences. RESULTS: The total score of public health service capability was 80.17 points. Chronic disease management capability scored the lowest, only 19.60. Gender, education level, average monthly salary, professional title, health status, employment form, work unit type, category of practicing (assistant) physician significantly influenced the public health service capability (all P < 0.05). PSM analysis revealed rural primary healthcare personnel had higher public health service capability scores than urban ones. CONCLUSIONS: The public health service capability of primary healthcare personnel in Henan Province was relatively high, but chronic disease management required improvement. Additionally, implementing effective training methods for different subgroups, and improving the service capability of primary medical and health institutions were positive measures.


Subject(s)
Health Personnel , Primary Health Care , Humans , China , Male , Female , Primary Health Care/statistics & numerical data , Adult , Health Personnel/statistics & numerical data , Middle Aged , Surveys and Questionnaires , Rural Health Services/statistics & numerical data , Rural Health Services/organization & administration
2.
Risk Manag Healthc Policy ; 17: 701-713, 2024.
Article in English | MEDLINE | ID: mdl-38549689

ABSTRACT

Objective: To evaluate the prevalence and influencing factors of long COVID, and measure the difference in health status between long COVID and non-long COVID cases. Methods: A cross-sectional survey was conducted from February 1 to 8, 2023, using a stratified random sampling method in four regions (eastern [Changzhou], central [Zhengzhou], western [Xining] and northeastern [Mudanjiang]) of China. The survey collected COVID-19 patients' socio-demographic characteristics and lifestyles information. The scores of lifestyles and health status range from 5 to 21 and 0 to 100 points, respectively. The criteria of "persistent health problems after 4 weeks of COVID-19 infection" issued by the US Centers for Disease Control and Prevention was used to assess long COVID. Multiple linear regression was used to analyze the influencing factors of the health. The bootstrap method was used to analyze the lifestyles' mediating effect. Propensity score matching (PSM) was used to evaluate the net difference in health scores between long COVID and non-long COVID cases. Results: The study included 3165 COVID-19 patients, with 308 (9.73%) long COVID cases. The health score of the long COVID cases (74.79) was lower than that of the non-long COVID cases (81.06). After adjusting for potential confounding variables, we found that never focused on mental decompression was a common risk factor for the health of both groups. Lifestyles was the mediating factor on individuals' health. After PSM, the non-long COVID cases' health scores remained higher than that of long COVID cases. Conclusion: The proportion of long COVID cases was low, but they were worse off in health. Given the positive moderating effect of healthy lifestyles on improving the health of long COVID cases, healthy lifestyles including mental decompression should be considered as the core strategy of primary prevention when the epidemic of COVID-19 is still at a low level.

3.
Hum Vaccin Immunother ; 20(1): 2297490, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38214317

ABSTRACT

During the COVID-19 pandemic, the vaccine hesitancy has significantly affected the vaccination. To evaluate the booster vaccine hesitancy and its influencing factors among urban and rural residents, as well as to estimate the net difference of booster vaccine hesitancy between urban and rural residents. We conducted a nationwide, cross-sectional Internet survey on 1-8 February 2023, and employed stratified random sampling technique to select participants (≥18 years old) from urban and rural areas. Multivariate logistic regression was used to determine the factors impacting booster vaccine hesitancy. Propensity Score Matching was used to estimate the net difference of COVID-19 booster vaccine hesitancy between urban and rural residents. The overall COVID-19 booster vaccine hesitancy rate of residents was 28.43%. The COVID-19 booster vaccine hesitancy rate among urban residents was found to be 34.70%, among rural residents was 20.25%. Chronic diseases, infection status, vaccination benefits, and trust in vaccine developers were associated with booster vaccine hesitancy among urban residents. Barriers of vaccination were associated with booster vaccine hesitancy among rural residents. PSM analysis showed that the urban residents have a higher booster vaccine hesitancy rate than rural residents, with a net difference of 6.20%. The vaccine hesitancy rate increased significantly, and the urban residents have a higher COVID-19 booster vaccine hesitancy than rural residents. It becomes crucial to enhance the dissemination of information regarding the advantages of vaccination and foster greater trust among urban residents toward the healthcare system.


Subject(s)
COVID-19 , Rural Population , Humans , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , Pandemics , Propensity Score , Vaccination Hesitancy , Vaccination
4.
Circ Res ; 134(2): 203-222, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38166414

ABSTRACT

BACKGROUND: Angiogenesis, which plays a critical role in embryonic development and tissue repair, is controlled by a set of angiogenic signaling pathways. As a TF (transcription factor) belonging to the basic helix-loop-helix family, HEY (hairy/enhancer of split related with YRPW motif)-1 (YRPW motif, abbreviation of 4 highly conserved amino acids in the motif) has been identified as a key player in developmental angiogenesis. However, the precise mechanisms underlying HEY1's actions in angiogenesis remain largely unknown. Our previous studies have suggested a potential role for posttranslational SUMOylation in the dynamic regulation of vascular development and organization. METHODS: Immunoprecipitation, mass spectrometry, and bioinformatics analysis were used to determine the biochemical characteristics of HEY1 SUMOylation. The promoter-binding capability of HEY1 was determined by chromatin immunoprecipitation, dual luciferase, and electrophoretic mobility shift assays. The dimerization pattern of HEY1 was determined by coimmunoprecipitation. The angiogenic capabilities of endothelial cells were assessed by CCK-8 (cell counting kit-8), 5-ethynyl-2-deoxyuridine staining, wound healing, transwell, and sprouting assays. Embryonic and postnatal vascular growth in mouse tissues, matrigel plug assay, cutaneous wound healing model, oxygen-induced retinopathy model, and tumor angiogenesis model were used to investigate the angiogenesis in vivo. RESULTS: We identified intrinsic endothelial HEY1 SUMOylation at conserved lysines by TRIM28 (tripartite motif containing 28) as the unique E3 ligase. Functionally, SUMOylation facilitated HEY1-mediated suppression of angiogenic RTK (receptor tyrosine kinase) signaling and angiogenesis in primary human endothelial cells and mice with endothelial cell-specific expression of wild-type HEY1 or a SUMOylation-deficient HEY1 mutant. Mechanistically, SUMOylation facilitates HEY1 homodimer formation, which in turn preserves HEY1's DNA-binding capability via recognition of E-box promoter elements. Therefore, SUMOylation maintains HEY1's function as a repressive TF controlling numerous angiogenic genes, including RTKs and Notch pathway components. Proangiogenic stimuli induce HEY1 deSUMOylation, leading to heterodimerization of HEY1 with HES (hairy and enhancer of split)-1, which results in ineffective DNA binding and loss of HEY1's angiogenesis-suppressive activity. CONCLUSIONS: Our findings demonstrate that reversible HEY1 SUMOylation is a molecular mechanism that coordinates endothelial angiogenic signaling and angiogenesis, both in physiological and pathological milieus, by fine-tuning the transcriptional activity of HEY1. Specifically, SUMOylation facilitates the formation of the HEY1 transcriptional complex and enhances its DNA-binding capability in endothelial cells.


Subject(s)
Endothelial Cells , Sumoylation , Animals , Humans , Mice , Angiogenesis , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA/metabolism , Endothelial Cells/metabolism
5.
BMC Public Health ; 23(1): 2374, 2023 11 30.
Article in English | MEDLINE | ID: mdl-38037040

ABSTRACT

BACKGROUND: COVID-19 is still prevalent in most countries around the world at the low level. Residents' lifestyle behaviors and emotions are critical to prevent COVID-19 and keep healthy, but there is lacking of confirmative evidence on how residents' lifestyle behaviors and emotional expressivity affected COVID-19 infection. METHODS: Baseline study was conducted in August 2022 and follow-up study was conducted in February 2023. Baseline survey collected information on residents' basic information, as well as their lifestyle behaviors and emotions. Follow-up study was carried out to gather data on COVID-19 infection condition. Binary logistic regression was utilized to identify factors that may influence COVID-19 infection. Attributable risk (AR) was computed to determine the proportion of unhealthy lifestyle behaviors and emotional factors that could be attributed to COVID-19 infection. Sensitivity analysis was performed to test the robustness of the results. RESULTS: A total of 5776 participants (46.57% males) were included in this study, yielding an overall COVID-19 infection rate of 54.8% (95%CI: 53.5 - 56.0%). The findings revealed that higher stress levels [aOR = 1.027 (95%CI; 1.005-1.050)] and lower frequency in wearing masks, washing hands, and keeping distance [aOR = 1.615 (95%CI; 1.087-2.401)], were positively associated with an increased likelihood of COVID-19 infection (all P < 0.05). If these associations were causal, 8.1% of COVID-19 infection would have been prevented if all participants had normal stress levels [Attributable Risk Percentage: 8.1% (95%CI: 5.9-10.3%)]. A significant interaction effect between stress and the frequency in wearing masks, washing hands, and keeping distance on COVID-19 infection was observed (ß = 0.006, P < 0.001), which also was independent factor of COVID-19 infection. CONCLUSIONS: The overall COVID-19 infection rate among residents is at a medium level. Residents' increasing stress and decreasing frequency in wearing masks and washing hands and keeping distance contribute to increasing risk of infection, residents should increase the frequency of mask-wearing, practice hand hygiene, keep safe distance from others, ensure stable emotional state, minimize psychological stress, providing evidence support for future responses to emerging infectious diseases.


Subject(s)
COVID-19 , Health Behavior , Female , Humans , Male , COVID-19/epidemiology , COVID-19/prevention & control , East Asian People , Follow-Up Studies , Healthy Lifestyle , Masks , SARS-CoV-2
6.
Circ Res ; 133(6): 508-531, 2023 09.
Article in English | MEDLINE | ID: mdl-37589160

ABSTRACT

BACKGROUND: Hypoxia is a major cause and promoter of pulmonary hypertension (PH), a representative vascular remodeling disease with poor prognosis and high mortality. However, the mechanism underlying how pulmonary arterial system responds to hypoxic stress during PH remains unclear. Endothelial mitochondria are considered signaling organelles on oxygen tension. Results from previous clinical research and our studies suggested a potential role of posttranslational SUMOylation (small ubiquitin-like modifier modification) in endothelial mitochondria in hypoxia-related vasculopathy. METHODS: Chronic hypoxia mouse model and Sugen/hypoxia rat model were employed as PH animal models. Mitochondrial morphology and subcellular structure were determined by transmission electron and immunofluorescent microscopies. Mitochondrial metabolism was determined by mitochondrial oxygen consumption rate and extracellular acidification rate. SUMOylation and protein interaction were determined by immunoprecipitation. RESULTS: The involvement of SENP1 (sentrin-specific protease 1)-mediated SUMOylation in mitochondrial remodeling in the pulmonary endothelium was identified in clinical specimens of hypoxia-related PH and was verified in human pulmonary artery endothelial cells under hypoxia. Further analyses in clinical specimens, hypoxic rat and mouse PH models, and human pulmonary artery endothelial cells and human embryonic stem cell-derived endothelial cells revealed that short-term hypoxia-induced SENP1 translocation to endothelial mitochondria to regulate deSUMOylation (the reversible process of SUMOylation) of mitochondrial fission protein FIS1 (mitochondrial fission 1), which facilitated FIS1 assembling with fusion protein MFN2 (mitofusin 2) and mitochondrial gatekeeper VDAC1 (voltage-dependent anion channel 1), and the membrane tethering activity of MFN2 by enhancing its oligomerization. Consequently, FIS1 deSUMOylation maintained the mitochondrial integrity and endoplasmic reticulum-mitochondria calcium communication across mitochondrial-associated membranes, subsequently preserving pulmonary endothelial function and vascular homeostasis. In contrast, prolonged hypoxia disabled the FIS1 deSUMOylation by diminishing the availability of SENP1 in mitochondria via inducing miR (micro RNA)-138 and consequently resulted in mitochondrial dysfunction and metabolic reprogramming in pulmonary endothelium. Functionally, introduction of viral-packaged deSUMOylated FIS1 within pulmonary endothelium in mice improved pulmonary endothelial dysfunction and hypoxic PH development, while knock-in of SUMO (small ubiquitin-like modifier)-conjugated FIS1 in mice exaggerated the diseased cellular and tissue phenotypes. CONCLUSIONS: By maintaining endothelial mitochondrial homeostasis, deSUMOylation of FIS1 adaptively preserves pulmonary endothelial function against hypoxic stress and consequently protects against PH. The FIS1 deSUMOylation-SUMOylation transition in pulmonary endothelium is an intrinsic pathogenesis of hypoxic PH.


Subject(s)
Hypertension, Pulmonary , Vascular Diseases , Humans , Mice , Rats , Animals , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/prevention & control , Endothelial Cells , Mitochondria , Disease Models, Animal , Endothelium , Ubiquitins , Membrane Proteins , Mitochondrial Proteins
7.
Am J Physiol Cell Physiol ; 324(2): C407-C419, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36534502

ABSTRACT

Angiogenesis is involved in development, reproduction, wound healing, homeostasis, and other pathophysiological events. Imbalanced angiogenesis predisposes patients to various pathological processes, such as angiocardiopathy, inflammation, and tumorigenesis. MicroRNAs (miRNAs) have been found to be important in regulating cellular processing and physiological events including angiogenesis. However, the role of miRNAs that regulate angiogenesis (angiomiRs) is not fully understood. Here, we observed a downregulation of the miR-196 family in endothelial cells upon hypoxia. Functionally, miR-196b-5p inhibited the angiogenic functions of endothelial cells in vitro and suppressed angiogenesis in Matrigel plugs and skin wound healing in vivo. Mechanistically, miR-196b-5p bound onto the 3' untranslated region (UTR) of high-mobility group AT-hook 2 (HMGA2) mRNA and repressed the translation of HMGA2, which in turn represses HIF1α accumulation in endothelial cells upon hypoxia. Together, our results establish the role of endothelial miR-196b-5p as an angiomiR that negatively regulates endothelial growth in angiogenesis via the hypoxia/miR-196b-5p/HMGA2/HIF1α loop. miR-196b-5p and its regulatory loop could be an important addition to the molecular mechanisms underlying angiogenesis and may serve as potential targets for antiangiogenic therapy.


Subject(s)
Endothelial Cells , Hypoxia , MicroRNAs , Humans , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Endothelial Cells/metabolism , Hypoxia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neovascularization, Pathologic/metabolism
8.
Proc Natl Acad Sci U S A ; 119(26): e2202631119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35733256

ABSTRACT

Angiogenesis contributes fundamentally to embryonic development, tissue homeostasis, and wound healing. Basic fibroblast growth factor (FGF2) is recognized as the first proangiogenic molecule discovered, and it facilitates angiogenesis by activating FGF receptor 1 (FGFR1) signaling in endothelial cells. However, the precise roles of FGFR and the FGF/FGFR signaling axis in angiogenesis remain unclear, especially because of the contradictory phenotypes of in vivo FGF and FGFR gene deficiency models. Our previous study results suggested a potential role of posttranslational small ubiquitin-like modifier modification (SUMOylation), with highly dynamic regulatory features, in vascular development and disorder. Here, we identified SENP1-regulated endothelial FGFR1 SUMOylation at conserved lysines responding to proangiogenic stimuli, while SENP1 functioned as the deSUMOylase. Hypoxia-enhanced FGFR1 SUMOylation restricted the tyrosine kinase activation of FGFR1 by modulating the dimerization of FGFR1 and FGFR1 binding with its phosphatase PTPRG. Consequently, it facilitated the recruitment of FRS2α to VEGFR2 but limited additional recruitment of FRS2α to FGFR1, supporting the activation of VEGFA/VEGFR2 signaling in endothelial cells. Furthermore, SUMOylation-defective mutation of FGFR1 resulted in exaggerated FGF2/FGFR1 signaling but suppressed VEGFA/VEGFR2 signaling and the angiogenic capabilities of endothelial cells, which were rescued by FRS2α overexpression. Reduced angiogenesis and endothelial sprouting in mice bearing an endothelial-specific, FGFR1 SUMOylation-defective mutant confirmed the functional significance of endothelial FGFR1 SUMOylation in vivo. Our findings identify the reversible SUMOylation of FGFR1 as an intrinsic fine-tuned mechanism in coordinating endothelial angiogenic signaling during neovascularization; SENP1-regulated FGFR1 SUMOylation and deSUMOylation controls the competitive recruitment of FRS2α by FGFR1 and VEGFR2 to switch receptor-complex formation responding to hypoxia and normoxia angiogenic environments.


Subject(s)
Endothelial Cells , Neovascularization, Physiologic , Receptor, Fibroblast Growth Factor, Type 1 , Sumoylation , Animals , Endothelial Cells/metabolism , Fibroblast Growth Factor 2/metabolism , Hypoxia/metabolism , Membrane Proteins/metabolism , Mice , Mutation , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction , Sumoylation/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
9.
Hepatology ; 73(4): 1381-1398, 2021 04.
Article in English | MEDLINE | ID: mdl-32609900

ABSTRACT

BACKGROUND AND AIMS: Transarterial chemoembolization (TACE) is a standard locoregional therapy for patients with hepatocellular carcinoma (HCC) patients with a variable overall response in efficacy. We aimed to identify key molecular signatures and related pathways leading to HCC resistance to TACE, with the hope of developing effective approaches in preselecting patients with survival benefit from TACE. APPROACH AND RESULTS: Four independent HCC cohorts with 680 patients were used. MicroRNA (miRNA) transcriptome analysis in patients with HCC revealed a 41-miRNA signature related to HCC recurrence after adjuvant TACE, and miR-125b was the top reduced miRNA in patients with HCC recurrence. Consistently, patients with HCC with low miR-125b expression in tumor had significantly shorter time to recurrence following adjuvant TACE in two independent cohorts. Loss of miR-125b in HCC noticeably activated the hypoxia inducible factor 1 alpha subunit (HIF1α)/pAKT loop in vitro and in vivo. miR-125b directly attenuated HIF1α translation through binding to HIF1A internal ribosome entry site region and targeting YB-1, and blocked an autocrine HIF1α/platelet-derived growth factor ß (PDGFß)/pAKT/HIF1α loop of HIF1α translation by targeting the PDGFß receptor. The miR-125b-loss/HIF1α axis induced the expression of CD24 and erythropoietin (EPO) and enriched a TACE-resistant CD24-positive cancer stem cell population. Consistently, patients with high CD24 or EPO in HCC had poor prognosis following adjuvant TACE therapy. Additionally, in patients with HCC having TACE as their first-line therapy, high EPO in blood before TACE was also noticeably related to poor response to TACE. CONCLUSIONS: MiR-125b loss activated the HIF1α/pAKT loop, contributing to HCC resistance to TACE and the key nodes in this axis hold the potential in assisting patients with HCC to choose TACE therapy.


Subject(s)
Carcinoma, Hepatocellular/therapy , Chemoembolization, Therapeutic/methods , Drug Resistance, Neoplasm/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Neoplasms/therapy , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , A549 Cells , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/genetics , Cohort Studies , Female , Gene Knockout Techniques , HEK293 Cells , Humans , Liver Neoplasms/genetics , Male , Mice , MicroRNAs/genetics , Middle Aged , Neoplastic Stem Cells/metabolism , Transcriptome , Transfection , Young Adult
10.
Cancer Res ; 71(23): 7312-22, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-21937681

ABSTRACT

Chromosomal translocations and activation of the fibroblast growth factor (FGF) receptor 1 (FGFR1) are a feature of stem cell leukemia-lymphoma syndrome (SCLL), an aggressive malignancy characterized by rapid transformation to acute myeloid leukemia and lymphoblastic lymphoma. It has been suggested that FGFR1 proteins lose their ability to recruit Src kinase, an important mediator of FGFR1 signaling, as a result of the translocations that delete the extended FGFR substrate-2 (FRS2) interacting domain that Src binds. In this study, we report evidence that refutes this hypothesis and reinforces the notion that Src is a critical mediator of signaling from the FGFR1 chimeric fusion genes generated by translocation in SCLL. Src was constitutively active in BaF3 cells expressing exogenous FGFR1 chimeric kinases cultured in vitro as well as in T-cell or B-cell lymphomas they induced in vivo. Residual components of the FRS2-binding site retained in chimeric kinases that were generated by translocation were sufficient to interact with FRS2 and activate Src. The Src kinase inhibitor dasatinib killed transformed BaF3 cells and other established murine leukemia cell lines expressing chimeric FGFR1 kinases, significantly extending the survival of mice with SCLL syndrome. Our results indicated that Src kinase is pathogenically activated in lymphomagenesis induced by FGFR1 fusion genes, implying that Src kinase inhibitors may offer a useful option to treatment of FGFR1-associated myeloproliferative/lymphoma disorders.


Subject(s)
Leukemia/enzymology , Lymphoma, B-Cell/metabolism , Lymphoma, T-Cell/metabolism , Oncogene Proteins, Fusion/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , src-Family Kinases/metabolism , 3T3 Cells , Animals , Cell Death/genetics , Cell Growth Processes/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dasatinib , Female , Humans , Leukemia/genetics , Leukemia/metabolism , Lymphoma, B-Cell/genetics , Lymphoma, T-Cell/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Oncogene Proteins, Fusion/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcr/metabolism , Pyrimidines/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction/genetics , Thiazoles/pharmacology , Transcription Factors/metabolism , Translocation, Genetic/genetics , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...