Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 112(7): 1850-1862, 2023 07.
Article in English | MEDLINE | ID: mdl-36858176

ABSTRACT

The objective of our study, which combined API-ILs strategy and controlled-release polymers, was to prepare a 72 h long-acting drug-in-adhesive patch for optimum delivery of asenapine (ASE). Special attention was paid to the permeation promotion mechanism and the controlled release behavior of ASE-ILs in pressure sensitive adhesives (PSA). Formulation factors were investigated by ex vivo transdermal experiments. The optimized patch was evaluated by pharmacokinetics study and skin irritation test. The obtained formulation was as follows, 15% w/w ASE-MA (about 1136 µg/cm2 ASE, 413 µg/cm2 MA), AACONH2 (Amide adhesive) as the matrix, 80 µm thickness, backing film of CoTran™ 9733. The optimized patch displayed satisfactory ex vivo and in vivo performance with Q 72 h of 620 ± 44 µg/cm2 and Fabs of 62.4%, which utilization rate (54.6%) was significantly higher than the control group (38.3%). By using the classical shake flask method, 13C NMR, DSC, and FTIR, the physicochemical properties and structure of ILs were characterized. log Do/w, ATR-FTIR, Raman, and molecular dynamics simulation results confirmed that ASE-MA (MA: 3-Methoxypropionic acid) had appropriate lipophilicity, and affected lipid fluidity as well as the conformation of keratin to improve the skin permeation. The FTIR, MDSC, rheology, and molecular docking results revealed that hydrogen bond (H-bond), were formed between ASE-MA and PSA, and the drug increased the molecular mobility of polymer chains. In summary, the 72 h long-acting patch of ASE was successfully prepared and it supplied a reference for the design of long-acting patches with ASE.


Subject(s)
Polymers , Skin Absorption , Delayed-Action Preparations , Molecular Docking Simulation , Polymers/metabolism , Transdermal Patch , Skin/metabolism , Administration, Cutaneous , Adhesives/chemistry
2.
Eur J Pharm Biopharm ; 183: 47-60, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36565969

ABSTRACT

The purpose of this study was to prepare a dexmedetomidine (Dex) 72 h long-acting patch by the combined use of ion-pair strategy and chemical enhancers (CEs), and to investigate molecular mechanisms of drug-loading enhancement and controlled release. The formulation of patch was optimized by single-factor investigation and Box-Behnken design. The pharmacokinetics, analgesic pharmacodynamics and irritation of the formulation were evaluated, respectively. Moreover, the effects of ion-pairs and CEs on the patch were characterized by DSC, rheology study, FTIR, and molecular docking, and the effects on the skin were evaluated by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR), Raman study, and molecular dynamics, respectively. The optimized formulation was 17.00 % (w/w) Dex-NA (Naphthoic acid), 7.20 % Polyglyceryl-3 dioleate (POCC), 25-AAOH as pressure sensitive adhesives (PSA) and 66.50 µm in thickness. Compared with the control group (Cmax = 62.02 ± 16.55 ng/mL, MRT0-t = 26.74 ± 1.27 h), the pharmacokinetics behavior of the optimization group was more stable and durable (Cmax = 31.22 ± 13.26 ng/mL, MRT0-t = 33.62 ± 1.62 h). Besides, it also showed good analgesic effect and no obvious irritation. The results indicated that Dex-NA both increased the drug-PSA interactions and inhibited the penetration of the drug into the skin. POCC increased the molecular mobility of the PSA and disrupted skin lipids thereby improving the drug penetration rate. In summary, the Dex long-acting patch was developed, which provided a reference for the combined application of ion-pair strategy and CEs in other long-acting transdermal delivery.


Subject(s)
Dexmedetomidine , Skin Absorption , Dexmedetomidine/pharmacology , Dexmedetomidine/metabolism , Molecular Docking Simulation , Delayed-Action Preparations/pharmacology , Transdermal Patch , Skin/metabolism , Administration, Cutaneous , Adhesives/chemistry , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...