Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 9(22): 6656-6661, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30354139

ABSTRACT

Phonon-assisted anti-Stokes photoluminescence (ASPL) up-conversion lies at the heart of optical refrigeration in solids. The thermal energy contained in the lattice vibrations is taken away by the emitted anti-Stokes photons' ASPL process, resulting in laser cooling of solids. To date, net laser cooling of solids is limited in rare-earth (RE)-doped crystals, glasses, and direct band gap semiconductors. Searching more solid materials with efficient phonon-assisted photoluminescence up-conversion is important to enrich optical refrigeration research. Here, we demonstrate the phonon-assisted PL up-conversion process from the silicon vacancy (SiV) center in diamond for the first time by studying ASPL spectra for the dependence of temperature, laser power, and excitation energy. Although net cooling has not been observed, our results show that net laser cooling might be eventually achieved in diamond by improving the external quantum efficiency to higher than 95%. Our work provides a promising route to investigate the laser cooling effect in diamond.

SELECTION OF CITATIONS
SEARCH DETAIL
...