Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928742

ABSTRACT

The low rehydration properties of commercial soy protein powder (SPI), a major plant-based food ingredient, have limited the development of plant-based foods. The present study proposes a treatment of soy lecithin modification combined with Alcalase hydrolysis to improve the rehydration of soy protein powder, as well as other processing properties (emulsification, viscosity). The results show that the soy protein-soy lecithin complex powder, which is hydrolyzed for 30 min (SPH-SL-30), has the smallest particle size, the smallest zeta potential, the highest surface hydrophobicity, and a uniform microstructure. In addition, the value of the ratio of the α-helical structure/ß-folded structure was the smallest in the SPH-SL-30. After measuring the rehydration properties, emulsification properties, and viscosity, it was found that the SPH-SL-30 has the shortest wetting time of 3.04 min, the shortest dispersion time of 12.29 s, the highest solubility of 93.17%, the highest emulsifying activity of 32.42 m2/g, the highest emulsifying stability of 98.33 min, and the lowest viscosity of 0.98 pa.s. This indicates that the treatment of soy lecithin modification combined with Alcalase hydrolysis destroys the structure of soy protein, changes its physicochemical properties, and improves its functional properties. In this study, soy protein was modified by the treatment of soy lecithin modification combined with Alcalase hydrolysis to improve the processing characteristics of soy protein powders and to provide a theoretical basis for its high-value utilization in the plant-based food field.

2.
Gels ; 10(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38534623

ABSTRACT

In this study, the purpose was to investigate the effects with different concentrations of carrageenan (CG, 0-0.30%) on the gel properties and freeze-thaw stability of soy protein isolate (SPI, 8%) cold-set gels. LF-NMR, MRI, and rheology revealed that CG promoted the formation of SPI-CG cold-set gel dense three-dimensional network structures and increased gel network cross-linking sites. As visually demonstrated by microstructure observations, CG contributed to the formation of stable SPI-CG cold-set gels with uniform and compact network structures. The dense gel network formation was caused when the proportion of disulfide bonds in the intermolecular interaction of SPI-CG cold-set gels increased, and the particle size and zeta potential of SPI-CG aggregates increased. SG20 (0.20% CG) had the densest gel network in all samples. It effectively hindered the migration and flow of water, which decreased the damage of freezing to the gel network. Therefore, SG20 exhibited excellent gel strength, water holding capacity, freeze-thaw stability, and steaming stability. This was beneficial for the gel having a good quality after freeze-thaw, which provided a valuable reference for the development of freeze-thaw-resistant SPI cold-set gel products.

3.
Int J Biol Macromol ; 256(Pt 1): 128381, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000596

ABSTRACT

The interactions between carboxymethyl cellulose sodium and proteins can regulate the interfacial and rheological properties of HIPEs, which plays a leading role in the stabilities of HIPEs. This article prepared various ratios of soluble soy protein isolate/carboxymethyl cellulose sodium (SPI/CMC) complexes in different proportions and examined the impact of various ratios of complexes on the structure and interface properties of complexes systems. Additionally, it explored the co-emulsification mechanism of HIPEs using SPI and CMC. At appropriate ratios of SPI/CMC, SPI and CMC mainly combine through non covalent binding and form complexes with smaller particle sizes and stronger electrostatic repulsion. The interfacial properties indicated that adding appropriate CMC increased the pliability and reduced the interfacial tension, while also enhancing the wettability of SPI/CMC complexes. At the ratio of 2:1, the SPI/CMC complexes-stabilized HIPPEs exhibited smaller oil droplets size, tighter droplet packing, and thicker interfacial film through the bridging of droplets and the generation of stronger gel-like network structures to prevent the coalescence/flocculation of droplets. These results suggested that the appropriate ratios of SPI/CMC can improve the physical stability of HIPEs by changing the structure and interface characteristics of the SPI/CMC complexes. This work provided theoretical support for stable HIPEs formed with protein-polysaccharide complexes.


Subject(s)
Carboxymethylcellulose Sodium , Soybean Proteins , Soybean Proteins/chemistry , Emulsions/chemistry , Wettability , Particle Size , Sodium
4.
Foods ; 12(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36900426

ABSTRACT

A cavitation jet can enhance food proteins' functionalities by regulating solvable oxidized soybean protein accumulates (SOSPI). We investigated the impacts of cavitation jet treatment on the emulsifying, structural and interfacial features of soluble soybean protein oxidation accumulate. Findings have shown that radicals in an oxidative environment not only induce proteins to form insoluble oxidative aggregates with a large particle size and high molecular weight, but also attack the protein side chains to form soluble small molecular weight protein aggregates. Emulsion prepared by SOSPI shows worse interface properties than OSPI. A cavitation jet at a short treating time (<6 min) has been shown to break the core aggregation skeleton of soybean protein insoluble aggregates, and insoluble aggregates into soluble aggregates resulting in an increase of emulsion activity (EAI) and constancy (ESI), and a decrease of interfacial tension from 25.15 to 20.19 mN/m. However, a cavitation jet at a long treating time (>6 min) would cause soluble oxidized aggregates to reaggregate through an anti-parallel intermolecular ß-sheet, which resulted in lower EAI and ESI, and a higher interfacial tension (22.44 mN/m). The results showed that suitable cavitation jet treatment could adjust the structural and functional features of SOSPI by targeted regulated transformation between the soluble and insoluble components.

SELECTION OF CITATIONS
SEARCH DETAIL
...