Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Food Res Int ; 186: 114339, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729694

ABSTRACT

The health-promoting activities of polyphenols and their metabolites originating from germinated quinoa (GQ) are closely related to their digestive behavior, absorption, and colonic fermentation; however, limited knowledge regarding these properties hinder further development. The aim of this study was to provide metabolomic insights into the profile, bioaccessibility, and transepithelial transport of polyphenols from germinated quinoa during in vitro gastrointestinal digestion and Caco-2 cell transport, whilst also investigating the changes in the major polyphenol metabolites and the effects of prebiotics during colonic fermentation. It was found that germination treatment increased the polyphenol content of quinoa by 21.91%. Compared with RQ group, 23 phenolic differential metabolites were upregulated and 47 phenolic differential metabolites were downregulated in GQ group. Compared with RQ group after simulated digestion, 7 kinds of phenolic differential metabolites were upregulated and 17 kinds of phenolic differential metabolites were downregulated in GQ group. Compared with RQ group after cell transport, 7 kinds of phenolic differential metabolites were upregulated and 9 kinds of phenolic differential metabolites were downregulated in GQ group. In addition, GQ improved the bioaccessibilities and transport rates of various polyphenol metabolites. During colonic fermentation, GQ group can also increase the content of SCFAs, reduce pH value, and adjust gut microbial populations by increasing the abundance of Actinobacteria, Bacteroidetes, Verrucomicrobiota, and Spirochaeota at the phylum level, as well as Bifidobacterium, Megamonas, Bifidobacterium, Brevundimonas, and Bacteroides at the genus level. Furthermore, the GQ have significantly inhibited the activity of α-amylase and α-glucosidase. Based on these results, it was possible to elucidate the underlying mechanisms of polyphenol metabolism in GQ and highlight its beneficial effects on the gut microbiota.


Subject(s)
Chenopodium quinoa , Colon , Digestion , Fermentation , Metabolomics , Polyphenols , Prebiotics , Humans , Polyphenols/metabolism , Chenopodium quinoa/metabolism , Caco-2 Cells , Colon/metabolism , Colon/microbiology , Germination , Biological Transport , Biological Availability , Gastrointestinal Microbiome/physiology
2.
Front Public Health ; 12: 1333487, 2024.
Article in English | MEDLINE | ID: mdl-38699428

ABSTRACT

Background: Iruplinalkib is a second-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) with efficacy in patients with ALK-positive crizotinib-resistant advanced non-small cell lung cancer (NSCLC), which is independently developed by a Chinese pharmaceutical company. This study examined the cost-effectiveness of iruplinalkib versus alectinib in the Chinese healthcare setting. Methods: A partitioned survival model was developed to project the economic and health outcomes. Efficacy was derived using unanchored matching-adjusted indirect comparison (MAIC). Cost and utility values were obtained from the literature and experts' opinions. Deterministic and probabilistic sensitivity analyses (PSA) were carried out to evaluate the model's robustness. Results: Treatment with iruplinalkib versus alectinib resulted in a gain of 0.843 quality-adjusted life years (QALYs) with incremental costs of $20,493.27, resulting in an incremental cost-effectiveness ratio (ICER) of $24,313.95/QALY. Parameters related to relative efficacy and drug costs were the main drivers of the model outcomes. From the PSA, iruplinalkib had a 90% probability of being cost-effective at a willingness-to-pay threshold of $37,863.56/QALY. Conclusion: Compared to alectinib, iruplinalkib is a cost-effective therapy for patients with ALK-positive crizotinib-resistant advanced NSCLC.


Subject(s)
Anaplastic Lymphoma Kinase , Carbazoles , Carcinoma, Non-Small-Cell Lung , Cost-Benefit Analysis , Crizotinib , Drug Resistance, Neoplasm , Lung Neoplasms , Piperidines , Quality-Adjusted Life Years , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carbazoles/therapeutic use , Carbazoles/economics , China , Crizotinib/therapeutic use , Piperidines/therapeutic use , Piperidines/pharmacology , Anaplastic Lymphoma Kinase/metabolism , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/economics , Male , Female , Middle Aged
3.
Org Biomol Chem ; 22(15): 3080-3085, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38563263

ABSTRACT

Herein we report an additive-free protocol for the facile synthesis of α,α-dichloroketones and α-chlorohydrins from various aryl terminal, diaryl internal, and aliphatic terminal alkynes and alkenes, respectively. The commercially available tert-butyl hypochlorite (tBuOCl) was employed as a suitable chlorinating reagent, being accompanied by the less harmful tBuOH as the by-product. In addition, the oxygen atoms in the products came from water rather than molecular oxygen, based on the 18O-labelling experiments. Meanwhile, the diastereoselectivity of the Z- and the corresponding E-alkenes has been compared and rationalized. Using a group of control experiments, the possible mechanisms have been proposed as the initial electrophilic chlorination of unsaturated C-C bonds in a Markovnikov-addition manner in general followed by a nucleophilic addition with water. This work simplified the oxychlorination method with a mild chlorine source and a green oxygen source under ambient conditions.

4.
Foods ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38672844

ABSTRACT

Colorectal carcinoma (CRC) is a major global health concern, with cancer metastasis being the main cause of patient mortality, and current CRC treatments are challenged by drug resistance. Although natural compounds, especially in foods like hawthorn proanthocyanidin extract (HPOE), have good anticancer activity, their effects on CRC metastasis remain unknown. Therefore, our objective was to investigate the impact and potential mechanisms of HPOE on the movement and infiltration of cells in the HCT116 CRC cells. Firstly, scratch-healing experiments confirmed the anti-migratory and anti-invasive capabilities of HPOE. Then, network pharmacology identified 16 possible targets, including MMP-9. Subsequently, RT-qPCR and Western blotting experiments confirmed that HPOE downregulated epithelial-mesenchymal transition-related factors (N-cadherin and MMP-9) and inhibited Wnt/ß-catenin pathway activation. Finally, these results were experimentally validated using the Wnt pathway activator Licl and inhibitor XAV939. It was confirmed that HPOE had a certain inhibitory effect on the activation of the Wnt signaling pathway caused by the activator Licl and could enhance the inhibitory effect of the inhibitor XAV939. Our findings provide a basis for developing functional foods or dietary supplements, especially positioning HPOE as a functional food raw material for adjuvant treatment of CRC, given its ability to inhibit metastasis through the Wnt/ß-catenin pathway.

5.
Front Psychol ; 15: 1349918, 2024.
Article in English | MEDLINE | ID: mdl-38655217

ABSTRACT

Introduction: Self-efficacy (SE), defined as an individual's belief in their ability to complete a task, is linked to top-down attentional control, influencing motor performance in sports. Although the behavioral effects of SE are well-documented, there is a lack of research on the mechanisms through which SE affects sports performance. Our research aims to elucidate the neurophysiological mechanisms that underlie the impact of self-efficacy on sports performance. Specifically, we intend to explore the effects of low and high SE on frontal midline theta (Fmθ) activity, associated with sustained top-down attention, and on motor performance. Methods: We recruited thirty-four professional golfers to perform 60 putts, during which their electroencephalographic activity was monitored. SE levels were assessed using a visual analog scale from 0 to 10 before each putt, with scores categorized into higher or lower SE based on each golfer's individual average score. Results: Paired t-tests indicated that trials with higher SE scores had a higher putting success rate than those with lower SE scores (53.3% vs. 46.7%). Furthermore, trials associated with higher SE scores exhibited lower Fmθ activity compared to those with lower SE scores (4.49 vs. 5.18). Discussion: Our results suggest that higher SE is associated with reduced top-down attentional control, leading to improved putting performance. These findings support Bandura's theory of SE, which suggests that the effects of efficacy beliefs are mediated by cognitive, motivational, emotional, and decision-making processes. This study sheds light on the intermediate processes of SE by examining its impact on the anticipation of outcomes, sports performance, and attentional control prior to putting.

6.
Fa Yi Xue Za Zhi ; 40(1): 1-14, 2024 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-38500455

ABSTRACT

OBJECTIVES: To analyze the literature on artificial intelligence in forensic research from 2012 to 2022 in the Web of Science Core Collection Database, to explore research hotspots and developmental trends. METHODS: A total of 736 articles on artificial intelligence in forensic medicine in the Web of Science Core Collection Database from 2012 to 2022 were visualized and analyzed through the literature measuring tool CiteSpace. The authors, institution, country (region), title, journal, keywords, cited references and other information of relevant literatures were analyzed. RESULTS: A total of 736 articles published in 220 journals by 355 authors from 289 institutions in 69 countries (regions) were identified, with the number of articles published showing an increasing trend year by year. Among them, the United States had the highest number of publications and China ranked the second. Academy of Forensic Science had the highest number of publications among the institutions. Forensic Science International, Journal of Forensic Sciences, International Journal of Legal Medicine ranked high in publication and citation frequency. Through the analysis of keywords, it was found that the research hotspots of artificial intelligence in the forensic field mainly focused on the use of artificial intelligence technology for sex and age estimation, cause of death analysis, postmortem interval estimation, individual identification and so on. CONCLUSIONS: It is necessary to pay attention to international and institutional cooperation and to strengthen the cross-disciplinary research. Exploring the combination of advanced artificial intelligence technologies with forensic research will be a hotspot and direction for future research.


Subject(s)
Artificial Intelligence , Forensic Medicine , Autopsy , China , Forensic Sciences
7.
J Chem Inf Model ; 64(8): 3411-3429, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38511939

ABSTRACT

Chloroethylnitrosoureas (CENUs) are important chemotherapies applied in the treatment of cancer. They exert anticancer activity by inducing DNA interstrand cross-links (ICLs) via the formation of two O6-alkylguanine intermediates, O6-chloroethylguanine (O6-ClEtG) and N1,O6-ethanoguanine (N1,O6-EtG). However, O6-alkylguanine-DNA alkyltransferase (AGT), a DNA-repair enzyme, can restore the O6-alkylguanine damages and thereby obstruct the formation of ICLs (dG-dC cross-link). In this study, the inhibitory mechanism of ICL formation was investigated to elucidate the drug resistance of CENUs mediated by AGT in detail. Based on the structures of the substrate-enzyme complexes obtained from docking and MD simulations, two ONIOM (QM/MM) models with different sizes of the QM region were constructed. The model with a larger QM region, which included the substrate (O6-ClEtG or N1,O6-EtG), a water molecule, and five residues (Tyr114, Cys145, His146, Lys165, and Glu172) in the active pocket of AGT, accurately described the repairing reaction and generated the results coinciding with the experimental outcomes. The repair process consists of two sequential steps: hydrogen transfer to form a thiolate anion on Cys145 and alkyl transfer from the O6 site of guanine (the rate-limiting step). The repair of N1,O6-EtG was more favorable than that of O6-ClEtG from both kinetics and thermodynamics aspects. Moreover, the comparison of the repairing process with the formation of dG-dC cross-link and the inhibition of AGT by O6-benzylguanine (O6-BG) showed that the presence of AGT could effectively interrupt the formation of ICLs leading to drug resistance, and the inhibition of AGT by O6-BG that was energetically more favorable than the repair of O6-ClEtG could not prevent the repair of N1,O6-EtG. Therefore, it is necessary to completely eliminate AGT activity before CENUs medication to enhance the chemotherapeutic effectiveness. This work provides reasonable explanations for the supposed mechanism of AGT-mediated drug resistance of CENUs and will assist in the development of novel CENU chemotherapies and their medication strategies.


Subject(s)
DNA Repair , Molecular Docking Simulation , Molecular Dynamics Simulation , O(6)-Methylguanine-DNA Methyltransferase , O(6)-Methylguanine-DNA Methyltransferase/metabolism , O(6)-Methylguanine-DNA Methyltransferase/chemistry , O(6)-Methylguanine-DNA Methyltransferase/antagonists & inhibitors , Humans , Quantum Theory , Drug Resistance, Neoplasm/drug effects , Nitrosourea Compounds/chemistry , Nitrosourea Compounds/pharmacology , Nitrosourea Compounds/metabolism
8.
J Org Chem ; 89(4): 2691-2702, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38277486

ABSTRACT

Herein, we report a catalytic radical-Smiles rearrangement system of arene migration from ether to carboxylic acid with riboflavin tetraacetate (RFT), a readily available ester of natural vitamin B2, as the photocatalyst and water as a green solvent, being free of external oxidant, base, metal, inert gas protection, and lengthy reaction time. Not only the known substituted 2-phenyloxybenzoic acids substrates but also a group of naphthalene- and heterocycle-based analogues was converted to the corresponding aryl salicylates for the first time. Mechanistic studies, especially a couple of kinetic isotope effect (KIE) experiments, suggested a sequential electron transfer-proton transfer processes enabled by the bifunctional flavin photocatalyst.

9.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5822-5829, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114178

ABSTRACT

Based on the CX3C chemokine ligand 1(CX3CL1)-CX3C chemokine receptor 1(CX3CR1) axis, this study explored the potential mechanism by which Zuogui Jiangtang Jieyu Formula(ZGJTJY) improved neuroinflammation and enhanced neuroprotective effect in a rat model of diabetes mellitus complicated with depression(DD). The DD rat model was established by feeding a high-fat diet combined with streptozotocin(STZ) intraperitoneal injection for four weeks and chronic unpredictable mild stress(CUMS) combined with isolated cage rearing for five weeks. The rats were divided into a control group, a model group, a positive control group, an inhibitor group, and a ZGJTJY group. The open field test and forced swimming test were used to assess the depression-like behaviors of the rats. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the expression levels of the pro-inflammatory cytokines interleukin-1ß(IL-1ß) and tumor necrosis factor-α(TNF-α) in plasma. Immunofluorescence staining was used to detect the expression of ionized calcium-binding adapter molecule 1(Iba1), postsynaptic density protein-95(PSD95), and synapsin-1(SYN1) in the hippocampus. Hematoxylin-eosin(HE) staining, Nissl staining, and TdT-mediated dUTP nick end labeling(TUNEL) fluorescence staining were performed to assess hippocampal neuronal damage. Western blot was used to measure the expression levels of CX3CL1, CX3CR1, A2A adenosine receptor(A2AR), glutamate receptor 2A(NR2A), glutamate receptor 2B(NR2B), and brain-derived neurotrophic factor(BDNF) in the hippocampus. Compared with the model group, the ZGJTJY group showed improved depression-like behaviors in DD rats, enhanced neuroprotective effect, increased expression of PSD95, SYN1, and BDNF(P<0.01), and decreased expression of Iba1, IL-1ß, and TNF-α(P<0.01), as well as the expression of CX3CL1, CX3CR1, A2AR, NR2A, and NR2B(P<0.01). These results suggest that ZGJTJY may exert its neuroprotective effect by inhibiting the CX3CL1-CX3CR1 axis and activation of hippocampal microglia, thereby improving neuroinflammation and abnormal activation of N-methyl-D-aspartate receptor(NMDAR) subunits, and ultimately enhancing the expression of synaptic-related proteins PSD95, SYN1, and BDNF in the hippocampus.


Subject(s)
Diabetes Mellitus , Neuroprotective Agents , Rats , Animals , Depression/drug therapy , Brain-Derived Neurotrophic Factor , Tumor Necrosis Factor-alpha/metabolism , Neuroinflammatory Diseases , Receptors, Glutamate , CX3C Chemokine Receptor 1/genetics
10.
Plant Physiol Biochem ; 204: 108071, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37922647

ABSTRACT

When attempting to maximize the crop yield from field-grown soybean (Glycine max (L.) Merr.) by means of improving the light conditions for photosynthesis in the canopy, it is crucial to find the optimal planting density and nitrogen application rate. The soybean plants that were the subject of our experiment were cultivated in N-dense mutual pairs, and included two cultivars with different leaf shapes; one cultivar sported ovate leaves (O-type) and the other lanceolate leaves (L-type). We analyzed the results quantitatively to determine the amount of spatial variation in light distribution and photosynthetic efficiency across the canopy, and to gauge the effect of the experimental parameters on the yield as well as the photosynthetic light and nitrogen use efficiency of the crop. Results indicate that the different leaf shapes were responsible for significant disparities between the photosynthetic utilization of direct and diffuse light. As the nitrogen fertilizer rate and the planting density increased, the soybean plants responded by adjusting leaf morphology in order to maximize the canopy apparent photosynthetic light use efficiency, which in turn affected the leaf nitrogen distribution in the canopy. Despite the fact that the light interception rate of the canopy of the L-type cultivar was lower than that of the canopy of the O-type cultivar, we found its canopy apparent photosynthetic nitrogen and light use efficiency were higher. It was interesting to note, however, that the nitrogen and light use efficiency contributions associated with exposure to diffuse light were greater for the latter than for the former.


Subject(s)
Glycine max , Nitrogen , Photosynthesis , Plant Leaves , Light
11.
Environ Sci Pollut Res Int ; 30(54): 115199-115227, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37878176

ABSTRACT

When a longwall face approaches the finish-off line, 1 month is normally required to relocate the longwall equipment and seal the longwall panel, during which time the goaf gas atmosphere changes and the risk of spontaneous combustion and gas explosion considerably increases. To minimise the occurrence of these hazards, an improved insight into gas flow dynamics within the longwall panel is essential during the panel sealing-off process. Based on mining conditions of an Australian underground coal mine, three-dimensional computational models were developed and calibrated with onsite gas monitoring data, allowing for evaluating ventilation arrangements and understanding methane dispersion in the longwall workings during the six-stage panel sealing-off process with confidence. The simulation results indicate that nitrogen should be injected on the travel road side at a distance of 120 m behind the longwall face at a rate of 0.75 m3/s and the rear of the travel road should be tightly sealed at the final sealing-off stage, resulting in oxygen levels lowering than 5% in the longwall workings and producing desired panel sealing-off performance. In addition, gas sensors should be employed and positioned at the appropriate locations to reliably monitor goaf atmosphere change. This study sheds improved insights into evaluating ventilation arrangements and understanding gas flow dynamics during the panel sealing-off process and provides critical knowledge of effective proactive goaf inertisation strategies, thus minimising the risk of spontaneous heating and gas explosion and reducing environmental pollution induced by these hazards.


Subject(s)
Coal Mining , Spontaneous Combustion , Explosions , Australia , Respiration
12.
Biomed Pharmacother ; 167: 115631, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37804814

ABSTRACT

Glioma is extremely difficult to be completely excised by surgery due to its invasive nature. Thus, chemotherapy still is the mainstay in the treatment of glioma after surgery. However, the natural blood-brain barrier (BBB) greatly restricts the penetration of chemotherapeutic agents into the central nervous system. As a front-line anti-glioma agent in clinical, carmustine (BCNU) exerts antitumor effect by inducing DNA damage at the O6 position of guanine. However, the therapeutic effect of BCNU was largely decreased because of the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and insufficient local drug concentrations. To overcome these obstacles, we synthesized a BCNU-loaded hypoxia-responsive nano-micelle with BBB penetrating capacity and AGT inhibitory activity, named as T80-HA-AZO-BG/BCNU NPs. In this nano-system, Tween 80 (T80) serves as a functional coating on the surface of the micelle, promoting transportation across the BBB. Hyaluronic acid (HA) with active tumor-targeting capability was linked with the hydrophobic O6-benzylguanine (BG) analog via a hypoxia-sensitive azo bond. Under hypoxic tumor microenvironment, the azo bond selectively breaks to release O6-BG as AGT inhibitor and BCNU as DNA alkylating agent. The synthesized T80-HA-AZO-BG/BCNU NPs showed good stability, favorable biocompatibility and hypoxia-responsive drug-releasing ability. T80 modification improved the transportation of the micelle across an in vitro BBB model. Moreover, T80-HA-AZO-BG/BCNU NPs exhibited significantly enhanced cytotoxicity against glioma cell lines with high AGT expression compared with traditional combined medication of BCNU plus O6-BG. We expect that the tumor-targeting nano-micelle designed for chloroethylnitrosourea will provide new tools for the development of effective glioma therapy.


Subject(s)
Carmustine , Glioma , Humans , Carmustine/pharmacology , Carmustine/therapeutic use , Micelles , Blood-Brain Barrier , Glioma/drug therapy , Hypoxia/drug therapy , Tumor Microenvironment
13.
J Org Chem ; 88(21): 15270-15281, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37852799

ABSTRACT

The employment of readily available photocatalysts and green oxygen atom sources is recognized as a promising strategy to develop sustainable catalysis for oxidation reactions. We herein reported a sacrificial reagent-free system consisting of riboflavin tetraacetate (RFT), an ester of natural vitamin B2 as the photocatalyst, and Sc(OTf)3 and NaCl as the cocatalysts for alkyne oxidation under blue light or even sunlight irradiation to produce 1,2-diketone in which the oxygen atoms were from both water and molecular oxygen, respectively. A major Cl-/Cl• cycle was proposed to be involved and achieved by the excited [RFT-2Sc3+]* complex via single electron transfer for the first time, distinguished from the OCl- active species by a two-electron process in previous flavin-halide photo-oxidation systems.

14.
Am J Cardiol ; 209: 29-35, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37839462

ABSTRACT

Oxidative stress has an integral role in the pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI). Glutathione peroxidase 3 (GPx3) is an important antioxidant enzyme in circulation and is mainly secreted by the kidney. This study aimed to evaluate the relation between GPx3 protein and CSA-AKI. This study is a nested case-control study in Zhongshan Hospital affiliated with Fudan University. We examined serum samples from 80 CSA-AKI patients and 80 age- and gender-matched non-AKI patients who underwent cardiac surgery. AKI was defined according to Kidney Disease: Improving Global Outcomes (KDIGO) 2012 criteria. We measured serum GPx3 concentration using the enzyme-linked immunosorbent assay. GPx3 ratio is the ratio of preoperative and 6 hours postoperative of GPx3 protein concentration. We applied dose-response relation analyses to odds ratio in different GPx3 ratio levels and integrated it into the logistic model to predict the risk of AKI. The receiver operating characteristic curve and area under the curve (AUC) was used to assess the prediction models. Postoperative serum GPx3 concentrations were significantly lower in the AKI group compared with the non-AKI group (1.78 ± 0.33 vs 2.03 ± 0.27, p <0.001). Malondialdehyde was higher in the AKI than in the non-AKI group (17.74 ± 8.65 vs 7.48 ± 4.59, p <0.001). The AKI risk increased in a dose-dependent manner, which was flat in the first half of the GPx3 ratio and then tended to be faster. The peaking odds ratio of CSA-AKI was 2.615 at the GPx3 ratio of 1.21 to 1.40. The AUC value to predict CSA-AKI only included the GPx3 ratio was 72.3%. After gradually integrating other covariates (body mass index, aortic crossclamp time, and cardiopulmonary bypass), the model showed an AUC of 82.6%. The serum GPx3 concentration was significantly lower in the CSA-AKI group. GPx3 ratio has a good predictive value for CSA-AKI, which may be a potential early diagnostic marker for AKI.


Subject(s)
Acute Kidney Injury , Cardiac Surgical Procedures , Humans , Case-Control Studies , Cardiac Surgical Procedures/adverse effects , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Kidney , Glutathione Peroxidase , Postoperative Complications/epidemiology , Risk Factors , Retrospective Studies
15.
J Nanobiotechnology ; 21(1): 291, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612719

ABSTRACT

Carmustine (BCNU), a vital type of chloroethylnitrosourea (CENU), inhibits tumor cells growth by inducing DNA damage at O6 position of guanine and eventually forming dG-dC interstrand cross-links (ICLs). However, the clinical application of BCNU is hindered to some extent by the absence of tumor selectivity, poor stability and O6-alkylguanine-DNA alkyltransferase (AGT) mediated drug resistance. In recent years, tumor microenvironment has been widely utilized for advanced drug delivery. In the light of the features of tumor microenvironment, we constructed a multifunctional hypoxia/esterase-degradable nanomicelle with AGT inhibitory activity named HACB NPs for tumor-targeting BCNU delivery and tumor sensitization. HACB NPs was self-assembled from hyaluronic acid azobenzene AGT inhibitor conjugates, in which O6-BG analog acted as an AGT inhibitor, azobenzene acted as a hypoxia-responsive linker and carboxylate ester bond acted as both an esterase-sensitive switch and a connector with hyaluronic acid (HA). The obtained HACB NPs possessed good stability, favorable biosafety and hypoxia/esterase-responsive drug-releasing ability. BCNU-loaded HACB/BCNU NPs exhibited superior cytotoxicity and apoptosis-inducing ability toward the human uterine cervix carcinoma HeLa cells compared with traditional combined medication of BCNU plus O6-BG. In vivo studies further demonstrated that after a selective accumulation in the tumor site, the micelles could respond to hypoxic tumor tissue for rapid drug release to an effective therapeutic dosage. Thus, this multifunctional stimulus-responsive nanocarrier could be a new promising strategy to enhance the anticancer efficacy and reduce the side effects of BCNU and other CENUs.


Subject(s)
Carcinoma , Carmustine , Female , Humans , Carmustine/pharmacology , HeLa Cells , Hyaluronic Acid , Tumor Microenvironment
16.
Surgery ; 174(4): 971-978, 2023 10.
Article in English | MEDLINE | ID: mdl-37586894

ABSTRACT

BACKGROUND: For patients with non-small cell lung cancer, a negative margin status is required for radical pulmonary surgery. Residual disease of the margin has been thoroughly studied in the past few decades. However, the prognostic significance of tracheal tunica adventitia invasion after lobectomy remains unclear. In this study, we aimed to investigate the clinical influence of tracheal tunica adventitia invasion after lobectomy. METHODS: We retrospectively collected the clinical data of 591 patients who consecutively underwent pulmonary lobectomy, including sleeve lobectomy, between 2012 and 2018 at Shanghai Chest Hospital. According to the tracheal tunica adventitia invasion status, we allocated the patients into 2 groups (tracheal tunica adventitia invasion and non-tracheal tunica adventitia). Disease-free and overall survival were evaluated, and we discussed the necessity of radiotherapy in patients with tracheal tunica adventitia. RESULTS: After propensity score matching to balance baseline characteristics, there were 167 individuals in the tracheal tunica adventitia invasion and non-tracheal tunica adventitia groups. In the hazard analysis, we found that tracheal tunica adventitia increased the risk of recurrence (hazard ratio: 0.652; P = .002) and impaired long-term survival (P < .001). Subgroup analysis revealed that tracheal tunica adventitia was an important risk factor, especially when the hilar lymph nodes were positive. In addition, tracheal tunica adventitia invasion promoted extra-thoracic lymph node metastasis. We discovered that radiotherapy did not improve the prognosis of patients in the tracheal tunica adventitia invasion group. CONCLUSIONS: After lobectomy, tracheal tunica adventitia invasion is a risk factor for non-small cell lung cancer and potentially increases extra-thoracic lymph node metastasis. Moreover, tracheal tunica adventitia invasion is not sensitive to postoperative radiotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/surgery , Adventitia , Lymphatic Metastasis , Retrospective Studies , Lung Neoplasms/surgery , China
17.
Medicine (Baltimore) ; 102(32): e34497, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37565897

ABSTRACT

In recent years, the association between portal vein thrombosis and liver transplantation has extensive attention from physicians worldwide. However, there is no available literature on bibliometric analysis in this research area. Herein, we aimed to conduct a bibliometric analysis to identify the hotspots and frontiers of research related to portal vein thrombosis and liver transplantation. Documents published between 2002 and 2022 were retrieved and downloaded from the Web of Science Core Collection database. VOSviewer was utilized to generate a visualization network map of authors, nations, institutions, journals, and keyword co-occurrence/clustering. Additionaly, CiteSpace was used to analyze the keywords with the strongest bursts. A total of 1272 articles and reviews were extracted from the database. The author Marco Senzolo published the largest number of papers. The United States was the most prolific country, and Hope-Bochon (France) was the top productive institution. Liver Transplantation was the most prolific journal in the field. The most commonly identified keywords in the study were cirrhosis, risk factors, portal vein thrombosis, and management, as revealed by the keyword co-occurrence analysis. It is suggested that patients with cirrhosis, portal vein thrombosis prevention, and management measures for portal vein thrombosis have been prominet topics in recent years. Furthermore, an analysis of keywords with the strongest citation bursts highlighted pediatric liver transplantation, direct oral anticoagulants, and nonalcoholic fatty liver disease as current research trends. Research in portal vein thrombosis and liver transplantation exhibits a general upward trend. The latest hot topics within this area of study involve pediatric patients and nonalcoholic fatty liver disease.


Subject(s)
Liver Transplantation , Non-alcoholic Fatty Liver Disease , Thrombosis , Humans , Child , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/surgery , Portal Vein , Liver Cirrhosis , Bibliometrics
18.
Food Sci Nutr ; 11(8): 4735-4744, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37576042

ABSTRACT

Recent reports suggest that salidroside protects cardiomyocytes from oxidative injury and stimulates glucose uptake by skeletal muscle cells. Despite these findings, the therapeutic potential of salidroside in the treatment of obesity and insulin resistance remains uncertain and requires further investigation. In the present study, the treatment effect of salidroside on the onset and development of the obese phenotype and insulin resistance as well as the underlying mechanisms was investigated using long-term high-fat diet-induced obese mice supplemented with salidroside. We used biochemical kits to determine serum biochemical parameters (including triacylglycerol, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, fasting glucose, and insulin). The results show that salidroside-supplemented animals showed better glucose tolerance and insulin sensitivity, decreased blood lipids, and weight gain (p < .05). Protein expression of p-Nrf2 and Nrf2 was analyzed by western blotting, and the mRNA levels of thermogenic-related genes (Ucp1, Pgc1a, Prdm16, and Cidea) were detected by quantitative RT-PCR. The results show an improvement in lipid peroxidation and Nrf2/ARE signaling, as well as an increased expression of the Ucp1, Pgc1a, Prdm16, and Cidea (p < .05). Our evidence suggests that salidroside alleviates diet-induced obesity and insulin resistance potentially by activating Nrf2/ARE pathway and enhancing the thermogenesis of adipose tissues. This induction represents a potential technique for the management of comorbidities related to obesity and its prevention.

19.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3874-3881, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37475079

ABSTRACT

This study aimed to investigate the intervention effect and mechanism of Xiaoyao Kangai Jieyu Recipe(XKJR) on hip-pocampal microglia and neuronal damage in mice with breast cancer related depression. The mouse model of breast cancer related depression was established by inoculation of 4T1 breast cancer cells in axilla and subcutaneous injection of corticosterone(30 mg·kg~(-1)). The successfully modeled mice were randomly divided into a model group, a positive drug group(capecitabine 60 mg·kg~(-1)+fluoxetine 19.5 mg·kg~(-1)), and XKJR group(19.5 mg·kg~(-1) crude drug), with 6 in each group. Another 6 normal mice were taken as a normal group. The administration groups were given corresponding drugs by gavage, while the normal and model groups were given an equal volume of distilled water, once a day for 21 consecutive days. The depressive behavior of mice was assessed by glucose consumption test, open field test and novelty-suppressed feeding test. Hematoxylin and eosin(HE) staining and tumor suppression rate were used to evaluate the changes of axillary tumors. The mRNA expressions and the relative protein expressions of interleukin-1ß(IL-1ß), interleukin-18(IL-18), cyclooxyganese-2(COX-2) and glutamyl-prolyl-tRNA synthetase(EPRs) in the hippocampus of mice were determined by quantitative real-time polymerase chain reaction(qRT-PCR) and immunohistochemistry, respectively. Immunofluorescence was performed to detect the mean fluorescence intensity of CD11b, a marker of hippocampal microglia activation. Nissler staining and transmission electron microscopy were employed to observe the morphological changes and the ultramorphological changes of hippocampal neurons, respectively. The experimental results indicated that compared with the normal group, the model group had reduced glucose consumption and lowered number of total activities in open field test(P<0.05, P<0.01), prolonged first feeding latency in no-velty-suppressed feeding test(P<0.01), and significant depression-like behavior; the contents of IL-1ß, IL-18, COX-2, and EPRs in hippocampus were increased(P<0.05, P<0.01), with hippocampal microglia activation and obvious neuronal damage. Compared with the model group, the positive drug group and the XKJR group presented an improvement in depressive behaviors, a decrease in the contents of IL-1ß, IL-18, COX-2 and EPRs in hippocampus, and an alleviation in the activation of hippocampal microglia and neuronal damage; the tumor suppression rates of positive drug and XKJR were 40.32% and 48.83%, respectively, suggesting a lower tumor growth rate than that of the model group. In summary, XKJR may improve hippocampal microglia activation and neuronal damage in mice with breast cancer related depression through activating COX signaling pathway.


Subject(s)
Depression , Neoplasms , Mice , Animals , Depression/drug therapy , Depression/genetics , Interleukin-18 , Cyclooxygenase 2/genetics , Hippocampus , Glucose
20.
Int J Biol Macromol ; 246: 125706, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37414316

ABSTRACT

In this study, a highly branched polysaccharide (GPF, 112.0 kDa) was isolated and purified from Gomphus clavatus Gray fruiting bodies. GPF was primarily composed of mannose, galactose, arabinose, xylose, and glucose at a molar ratio of 3.2:1.9:1.6:1.2:1.0. GPF was a highly branched heteropolysaccharide composed of 13 glucosidic bonds, with a degree of branching (DB) of 48.85 %. GPF exhibited anti-aging activity in vivo, significantly increased antioxidant enzymes activities (SOD, CAT and GSH-Px), improved total antioxidant capability (T-AOC) and decreased MDA level in the serum and brain of d-Gal induced aging mice. Behavioral experiments showed that GPF effectively improved learning and memory deficits in d-Gal induced aging mice. Mechanistic studies indicated that GPF could activate AMPK by increasing AMPK phosphorylation and upregulating SIRT1 and PGC-1α expression. These findings suggest that GPF has significant potential as a natural candidate to slow down aging and prevent aging-related diseases.


Subject(s)
AMP-Activated Protein Kinases , Antioxidants , Mice , Animals , Antioxidants/chemistry , AMP-Activated Protein Kinases/metabolism , Aging , Polysaccharides/pharmacology , Polysaccharides/chemistry , Galactose/pharmacology , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...