Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Lab ; 66(3)2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32162871

ABSTRACT

BACKGROUND: The treatment options of systemic lupus erythematosus (SLE) patients in active and inactive phases are very different clinically, and the prognosis of patients with active SLE is much worse than inactive patients. However, the present indicators for diagnosis of SLE in activity are limited and inefficient. METHODS: Three hundred thirty patients with SLE were included. All patients are classified as SLEDAI (systemic lupus erythematosus disease activity index) > 4 as active and SLEDAI ≤ 4 as inactive. The linear correlation between variables was assessed by Pearson's correlation analysis. The difference between parameters in active and inactive patients was evaluated by the Mann-Whitney U test. The evaluation capacity of erythrocyte sedimenta-tion/red blood cell (ERR) and red blood cell/albumin ratio (RAR) on SLE activity was determined by bivariate regression analysis. Sensitivity and specificity are assessed by receiver operating characteristic curve (ROC). RESULTS: Compared with the inactive SLE, ESR (52.97 ± 35.66 vs. 32.38 ± 29.16 p < 0.001), ERR (15.40 ± 12.41 vs. 8.19 ± 8.10 p < 0.001) and RAR (0.13 ± 0.10 vs. 0.11 ± 0.20 p = 0.038) are all elevated in active SLE (52.97 ± 35.66 vs. 32.38 ±2 9.16 p < 0.001). ERR shows better correlation than RAR with ESR (p < 0.001 vs. p = 0.911). Patients with active SLE exhibited higher SLEDAI than those with inactive SLE (8.67 ± 2.67 vs. 3.27 ± 1.36, p < 0.001). According to ROC analysis, when ESR levels > 58.5 and ERR levels > 13.18, the sensitivity is 37.6% and 45.2%, the specificity is 83.0% and 83.2%. CONCLUSIONS: ESR and ERR are potential indicators for diagnosis of active and inactive SLE.


Subject(s)
Blood Sedimentation , Erythrocyte Count , Lupus Erythematosus, Systemic , Adult , Erythrocytes/physiology , Female , Humans , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/physiopathology , Male , Middle Aged , ROC Curve , Retrospective Studies , Sensitivity and Specificity , Young Adult
2.
Oncotarget ; 8(39): 65370-65385, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-29029437

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly aggressive, solid malignancy that has a poor prognosis. Long non-coding RNAs (lncRNAs) have been found to be dysregulated in various cancers, including HCC. However, the molecular mechanism involving lncRNAs in HCC remains largely unknown. In this study, lncRNAs differentially expressed between HCC and corresponding non-cancerous tissue were identified by microarray analysis. A specific differentially expressed lncRNA UBE2CP3 (ubiquitin conjugating enzyme E2 C pseudogene 3) was identified. LncRNA UBE2CP3 was frequently up-regulated in HCC samples as assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH) experiments. Clinical data showed that high levels of lncRNA UBE2CP3 were correlated with poor prognosis in HCC patients. Functional studies demonstrated that over-expression of lncRNA UBE2CP3 promoted cell invasion and migration in vitro and in vivo. Mechanistically, enhanced expression of lncRNA UBE2CP3 increased the expression of Snail1 and N-cadherin, but decreased the expression of E-cadherin, thus promoting the process of epithelial to mesenchymal transition (EMT) and finally inducing cell invasion and migration. Furthermore, serum levels of lncRNA UBE2CP3 were increased in HCC patients and decreased after surgery. Our results suggest that lncRNA UBE2CP3 promotes the metastasis of HCC and that serum lncRNA UBE2CP3 may be a new biomarker for the diagnosis of HCC.

3.
Hepatol Res ; 46(8): 804-15, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26583881

ABSTRACT

AIM: miR-548p is a recently identified and poorly characterized miRNA. However, its role of miR-548p in tumorigenesis and progression remains poorly understood. Here, we aimed to investigate the biofunction of miR-548p in hepatocellular carcinogenesis. METHODS: The expression levels of miR-548p were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The role of miR-548p in hepatocellular carcinoma (HCC) was determined by colony formation, flow cytometry assay and nude mice xenograft experiments. miR-548p target genes were analyzed by miRNA target predication programs and verified by qRT-PCR, western blotting assay and dual-luciferase reporter assay. RESULTS: miR-548p is repressed by hepatitis B virus X protein (HBx) in HCC tumor tissues and hepatoma cells, and inhibited cell growth by inhibiting cell proliferation and promoting cell apoptosis. miR-548p directly downregulated the expression of hepatitis B x-interacting protein (HBXIP) by binding to the 3'-untranslated region of HBXIP mRNA. Further study showed that hepatocyte nuclear factor-4a (HNF4A) promoted the expression of miR-548p and inhibited the transcription of HBXIP. HNF4A is a dominant transcriptional regulator of hepatocyte differentiation and hepatocellular carcinogenesis, and is shown to be repressed by HBx. CONCLUSION: We proposed the model for HBx/HNF4A/miR-548p/HBXIP pathway that controls hepatoma cell growth and tumorigenesis of HCC. miR-548p was identified as a tumor-suppressor in HBx-associated hepatocellular carcinogenesis.

4.
Oncotarget ; 6(32): 33791-804, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26393879

ABSTRACT

Accumulating evidence supports an important role for the hepatitis B virus x protein (HBx) in the pathogenesis of hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC), but the underlying mechanisms are not entirely clear. Here, we identified a novel long noncoding RNA (lncRNA) DBH-AS1 involved in the HBx-mediated hepatocarcinogenesis. The levels of DBH-AS1 were positively correlated with hepatitis B surface antigen (HBsAg) and tumor size in HCC tissues. Functionally, transgenic expression of DBH-AS1 significantly enhanced cell proliferation and tumorigenesis, whereas short hairpin RNA knockdown of DBH-AS1 caused an inhibition of cell proliferation. Mechanistically, overexpression of DBH-AS1 induced cell cycle progression by accelerating G1/S and G2/M transition concomitantly with upregulation of CDK6, CCND1, CCNE1 and downregulation of p16, p21 and p27. We also found that enhanced DBH-AS1 expression inhibited serum starvation-induced apoptosis of HCC cells. In contrast, suppressed DBH-AS1 expression had opposite effects. Furthermore, DBH-AS1 was shown to activate MAPK pathway. We also provide evidence that DBH-AS1 could be significantly induced by HBx protein and markedly down-regulated by p53. Thus, we concluded that DBH-AS1 can be induced by HBx and inactivated by p53, and consequently promote cell proliferation and cell survival through activation of MAPK signaling in HCC. Our study suggests that DBH-AS1 acts as an oncogene for HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Hepatitis B Surface Antigens/metabolism , Liver Neoplasms/metabolism , MAP Kinase Signaling System , RNA, Long Noncoding/genetics , Trans-Activators/genetics , Aged , Animals , Apoptosis , Carcinoma, Hepatocellular/genetics , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Cell Survival , Cell Transformation, Neoplastic/genetics , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , RNA Interference , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Viral Regulatory and Accessory Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...