Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2429-2435, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37899109

ABSTRACT

The three provinces of Northeast China are crucial to national commodity grain production. Soils in those areas have begun to severely degrade after long-term high-intensity use, with wind erosion as one of the main reasons. Based on meteorological and soil data from 1981 to 2019, we evaluated the spatial-temporal characteristics of wind erosion on bare land in the three provinces of Northeast China by using the revised wind erosion equation (RWEQ), and analyzed the contributions of meteorological factors to wind erosion on bare land. The results showed that, the meteorological factors of wind erosion were overall high in southwestern part and low in northeastern part of the region. In general, wind erosion in the region was substantial, especially in Liaoning. During the 39 years, wind erosion significantly increased throughout the whole year and during the growing season, at a rate of 129 and 105 t·km-2 per decade, respectively. The obvious increase in wind erosion was observed in the northwest Liaoning, Liaohe Plain, and Changbai Mountain area. Wind speed and air temperature were the main factors affecting wind erosion during the year and non-growing season, which contributed less during the growing season when precipitation contributed the most. We concluded that climate change has aggravated soil wind erosion in the three provinces of Northeast China.


Subject(s)
Climate Change , Wind , Soil , China , Temperature
2.
Ying Yong Sheng Tai Xue Bao ; 22(11): 2875-82, 2011 Nov.
Article in Chinese | MEDLINE | ID: mdl-22303664

ABSTRACT

This paper monitored the oat growth and cation absorption characteristics on a saline-alkali soil in the Baicheng region of Jilin Province under low, medium, and high levels of salt stress. No significant differences were observed in the shoot growth and yield components under the three levels of salt stress, but the root biomass and root/shoot ratio decreased significantly with increasing salt stress level. At maturing stage, the root/shoot ratio under medium and high salt stresses was 77.2% and 64.5% of that under low salt stress, respectively. Under the three levels of salt stress, the K+/Na+ and Ca2+/Na+ ratios in oat plant had significant differences at trefoil stage, but no significant differences at heading stage. With the increase of salt stress level, the cation absorption selectivity coefficient of oat at filling stage decreased significantly, but the transportation selectivity coefficient had no significant difference under the three levels of stress. It was concluded that oat could adapt to the salt and alkali stress of soda-alkaline soil to some extent, and the adaptation capability decreased with the increasing level of stress. The decrease of oat root biomass and the stronger ion selective absorption capacity at heading stage under salt and alkali stress could benefit the shoot growth and yield components of oat.


Subject(s)
Avena/growth & development , Carbonates , Cations/metabolism , Sodium Chloride , Stress, Physiological , Absorption , Adaptation, Physiological/physiology , Avena/metabolism , Avena/physiology , Biomass , Carbonates/analysis , Sodium Chloride/analysis , Soil/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...