Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 19(13): 3868-3876, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37319332

ABSTRACT

Quantum imaginary time evolution (QITE) is one of the promising candidates for finding the eigenvalues and eigenstates of a Hamiltonian on a quantum computer. However, the original proposal suffers from large circuit depth and measurements due to the size of the Pauli operator pool and Trotterization. To alleviate the requirement for deep circuits, we propose a time-dependent drifting scheme inspired by the qDRIFT algorithm [Campbell, E. Phys. Rev. Lett. 2019, 123, 070503]. We show that this drifting scheme removes the depth dependency on the size of the operator pool and converges inversely with respect to the number of steps. We further propose a deterministic algorithm that selects the dominant Pauli term to reduce the fluctuation for the ground state preparation. We also introduce an efficient measurement reduction scheme across Trotter steps that removes its cost dependence on the number of iterations. We analyze the main source of error for our scheme both theoretically and numerically. We numerically test the validity of depth reduction, convergence performance of our algorithms, and the faithfulness of the approximation for our measurement reduction scheme on several benchmark molecules. In particular, the results on the LiH molecule give circuit depths comparable to that of the advanced adaptive variational quantum eigensolver (VQE) methods while requiring much fewer measurements.

2.
Nat Commun ; 14(1): 1860, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37012248

ABSTRACT

Diffusion Monte Carlo (DMC) based on fixed-node approximation has enjoyed significant developments in the past decades and become one of the go-to methods when accurate ground state energy of molecules and materials is needed. However, the inaccurate nodal structure hinders the application of DMC for more challenging electronic correlation problems. In this work, we apply the neural-network based trial wavefunction in fixed-node DMC, which allows accurate calculations of a broad range of atomic and molecular systems of different electronic characteristics. Our method is superior in both accuracy and efficiency compared to state-of-the-art neural network methods using variational Monte Carlo (VMC). We also introduce an extrapolation scheme based on the empirical linearity between VMC and DMC energies, and significantly improve our binding energy calculation. Overall, this computational framework provides a benchmark for accurate solutions of correlated electronic wavefunction and also sheds light on the chemical understanding of molecules.

3.
J Chem Phys ; 157(16): 164104, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36319420

ABSTRACT

Accurate ab initio calculations are of fundamental importance in physics, chemistry, biology, and materials science, which have witnessed rapid development in the last couple of years with the help of machine learning computational techniques such as neural networks. Most of the recent efforts applying neural networks to ab initio calculation have been focusing on the energy of the system. In this study, we take a step forward and look at the interatomic force obtained with neural network wavefunction methods by implementing and testing several commonly used force estimators in variational quantum Monte Carlo (VMC). Our results show that neural network ansatz can improve the calculation of interatomic force upon traditional VMC. The relationship between the force error and the quality of the neural network, the contribution of different force terms, and the computational cost of each term is also discussed to provide guidelines for future applications. Our work demonstrates that it is promising to apply neural network wavefunction methods in simulating structures/dynamics of molecules/materials and provide training data for developing accurate force fields.


Subject(s)
Neural Networks, Computer , Quantum Theory , Monte Carlo Method , Machine Learning , Materials Science
SELECTION OF CITATIONS
SEARCH DETAIL
...