Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 184: 120-131, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38815286

ABSTRACT

The recycling of spent lithium-ion batteries (LIBs) can not only reduce the potential harm caused by solid waste piles to the local environment but also provide raw materials for manufacturing new batteries. Flotation is an alternative approach to achieve the selective separation of cathode and anode active materials from spent LIBs. However, the presence of organic binder on the surface of hydrophilic lithium transition-metal oxides results in losses of cathode materials in the froth phase. In this study, plasma treatment was utilized to remove organic layers from cathode and anode active materials. Firstly, the correlations between plasma treatment parameters (e.g., input power, air flowrate, and treatment time) were explored and the contact angles of cathode and anode active materials were investigated by the response surface methodology. Secondly, differences in the flotation recoveries of cathode and anode active materials were enhanced with plasma modification prior to flotation, which is consistent with the contact angle measurement. Finally, the plasma-modification mechanisms of hydrophobicity of cathode and anode active materials were discussed according to Fourier Transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. The proposed method could be a promising tool to enhance the flotation separation efficiency of cathode and anode active materials for the recycling of spent LIBs.


Subject(s)
Electric Power Supplies , Electrodes , Hydrophobic and Hydrophilic Interactions , Lithium , Recycling , Lithium/chemistry , Recycling/methods , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , Electronic Waste
2.
Ultrason Sonochem ; 95: 106415, 2023 May.
Article in English | MEDLINE | ID: mdl-37098313

ABSTRACT

This study aimed to investigate the effect of ultrasonic power and temperature on the impurity removal rate during conventional and ultrasonic-assisted leaching of aphanitic graphite. The results showed that the ash removal rate increased gradually (∼50 %) with the increase in ultrasonic power and temperature but deteriorated at high power and temperature. The unreacted shrinkage core model was found to fit the experimental results better than other models. The Arrhenius equation was used to calculate the finger front factor and activation energy under different ultrasonic power conditions. The ultrasonic leaching process was significantly influenced by temperature, and the enhancement of the leaching reaction rate constant by ultrasound was mainly reflected in the increase of the pre-exponential factor A. Ultrasound treatment improved the efficiency of impurity mineral removal by destroying the inert layer formed on the graphite surface, promoting particle fragmentation, and generating oxidation radicals. The poor reactivity of hydrochloric acid with quartz and some silicate minerals is a bottleneck limiting the further improvement of impurity removal efficiency in ultrasound-assisted aphanitic graphite. Finally, the study suggests that introducing fluoride salts may be a promising method for deep impurity removal in the ultrasound-assisted hydrochloric acid leaching process of aphanitic graphite.

SELECTION OF CITATIONS
SEARCH DETAIL
...