Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 268: 116239, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38377827

ABSTRACT

Ionizing radiation in space, radiation devices or nuclear disasters are major threats to human health and public security. In this paper, in order to find the potential novel compounds decreasing the radiation-induced damage by targeting p53 apoptosis pathway and TLR2 passway, a series of novel quinoline derivatives were designed, synthesized, and evaluated their biological activities. Most of the synthesized compounds showed significant radioprotective effects in vitro, and the compound 5 has the best performance. Therefore, we verified its radioprotective activity in vivo and investigated the mechanism of its excellent activity. The results in vivo indicated that compound 5 not only markedly enhanced the survival rate (80 %) of mice 30 days after lethal exposure to irradiation, but also significantly reduced the radiation-induced damage to haematopoietic system and intestinal tissue of mice. The mechanistic studies indicated that compound 5 acted on the p53 pathway to reduce radiation-induced cell apoptosis and at the same time stimulated TLR2 to up-regulate the expressions of radiation protection factors. Molecular dynamics study shows that compound 5 would effectively bind to the TLR2 protein and further revealed the binding mechanism. Taken together, all the findings of our study demonstrate the quinoline derivative 5 is a potent radioprotective compound, which holds a great therapeutic potential for further development.


Subject(s)
Quinolines , Radiation Protection , Radiation-Protective Agents , Humans , Mice , Animals , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/chemistry , Tumor Suppressor Protein p53/metabolism , Toll-Like Receptor 2/metabolism , Apoptosis , Quinolines/pharmacology
2.
Angew Chem Int Ed Engl ; 61(15): e202111443, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-34997699

ABSTRACT

In photon-conversion processes, rapid cooling of photo-induced hot carriers is a dominant energy loss channel. We herein report a 3-fold reduced hot carrier cooling rate in CsPbBr3 nanocrystals capped with a cross-linked polysiloxane shell in comparison to single alkyl-chain oleylamine ligands. Relaxation of hot charge carriers depends on the carrier-phonon coupling (CPC) process as an important channel to dissipate energies in nanostructured perovskite materials. The CPC strengths in the two samples were measured through cryogenic photoluminescence spectroscopic measurements. The effect of organic ligands on the CPC in CsPbBr3 nanocrystals is elucidated based on a damped oscillation model. This supplements the conventional polaron-based CPC model, by involving a damping effect on the CPC from the resistance of the ligands against nanocrystal lattice vibrations. The model also accounts for the observed linear temperature-dependence of the CPC strength. Our work enables predictions about the effect of the ligands on the performance of perovskite nanocrystals in future applications.

3.
Sensors (Basel) ; 20(24)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33333807

ABSTRACT

It is of great significance to obtain soil texture information quickly for the realization of farmland management. Soil with good particle condition can well regulate the needs of plants for water, nutrients, air, and temperature during crop growth, thereby promoting high crop yields. The existing methods of measuring soil texture cannot meet the requirements of time and spatial resolution. For this reason, a vehicle-mounted soil texture detector was designed and developed based on machine vision and soil electrical conductivity devices. The detector does not require pretreatment such as air-drying and screening of the soil, and completely uses the original information of the farmland. The whole process can obtain the soil texture information in real time, omitting the complicated chemical process, and saving manpower and material resources. The vehicle-mounted detector is divided into a mechanical part, a control part, and a display part. The mechanical part provides measurement support for the acquisition of soil texture information; the control part collects and processes signals and images; the measurement results can be intuitively observed and recorded on the display, and can be operated through the mobile phone. The vehicle-mounted detector obtains soil conductivity through 4 disc electrodes, while the vehicle-mounted industrial camera captures the soil surface image, and extracts texture parameters through image processing, takes EC and texture parameters as input, and the embedded SVM model of the instrument was used to perform soil texture prediction. In order to verify the measurement accuracy of the detector, farmland verification experiments were carried out on farmland loam in Tongzhou District and Haidian District of Beijing. The R2 of the correlation between the measured value of soil EC and the actual value was 0.75, and the accuracy of soil texture prediction was 84.86%. It shows that the developed vehicle-mounted soil texture detector can meet the requirements for rapid acquisition of farmland texture information.

SELECTION OF CITATIONS
SEARCH DETAIL
...