Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Neurosci Lett ; 826: 137714, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38479554

ABSTRACT

Social isolation, a known stressor, can have detrimental effects on both physical and mental health. Recent scientific attention has been drawn to the gut-brain axis, a bidirectional communication system between the central nervous system and gut microbiota, suggesting that gut microbes may influence brain function. This study aimed to explore the impact of social isolation on the intestinal barrier and gut microbiota. 40 male BALB/c mice were either individually housed or kept in groups for 8 and 15 weeks. Socially isolated mice exhibited increased anxiety-like behavior, with significant differences between the 8-week and 15-week isolation groups (P < 0.05). After 8 weeks of isolation, there was a reduction in tight junction protein expression in the intestinal mechanical barrier. Furthermore, after 15 weeks of isolation, both tight junction protein and mucin expression, key components of the intestinal chemical barrier, decreased. This was accompanied by a substantial increase in inflammatory cytokines (IL-6 mRNA, IL-10, and TNF-α) in colon tissue in the 15-week isolated group (P < 0.05). Additionally, Illumina MiSequencing revealed significant alterations in the gut microbiota of socially isolated mice, including reduced Firmicutes and Bacteroides compared to the control group. Lactobacillus levels also decreased in the socially isolated mice.


Subject(s)
Gastrointestinal Microbiome , Mice , Male , Animals , Gastrointestinal Microbiome/physiology , Cytokines/metabolism , Social Isolation , Tumor Necrosis Factor-alpha , Tight Junction Proteins , Mice, Inbred C57BL
2.
BMC Genomics ; 24(1): 589, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37794314

ABSTRACT

BACKGROUND: The Q-426 strain isolated from compost samples has excellent antifungal activities against a variety of plant pathogens. However, the complete genome of Q-426 is still unclear, which limits the potential application of Q-426. RESULTS: Genome sequencing revealed that Q-426 contains a single circular chromosome 4,086,827 bp in length, with 4691 coding sequences and an average GC content of 46.3%. The Q-426 strain has a high degree of collinearity with B. velezensis FZB42, B. velezensis SQR9, and B. amyloliquefaciens DSM7, and the strain was reidentified as B. velezensis Q-426 based on the homology analysis results. Many genes in the Q-426 genome have plant growth-promoting activity, including the secondary metabolites of lipopeptides. Genome mining revealed 14 clusters and 732 genes encoding secondary metabolites with predicted functions, including the surfactin, iturin, and fengycin families. In addition, twelve lipopeptides (surfactin, iturin and fengycin) were successfully detected from the fermentation broth of B. velezensis Q-426 by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS/MS), which is consistent with the genome analysis results. We found that Q-426 produced indole-3-acetic acid (IAA) at 1.56 mg/l on the third day of incubation, which might promote the growth of plants. Moreover, we identified eighteen volatile compounds (VOCs, including 2-heptanone, 6-methylheptan-2-one, 5-methylheptan-2-one, 2-nonanone, 2-decanone, 2-undecanone, 2-dodecanone, 2-tridecanone, 2-tetradecanone, 2-nonadecanone, pentadecanoic acid, oleic acid, dethyl phthalate, dibutyl phthalate, methyl (9E,12E)-octadeca-9,12-dienoate), pentadecane, (6E,10E)-1,2,3,4,4a,5,8,9,12,12a-decahydro-1,4-methanobenzo[10]annulene, and nonanal) based on gas chromatograph-mass spectrometer (GC/MS) results. CONCLUSIONS: We mined secondary metabolite-related genes from the genome based on whole-genome sequence results. Our study laid the theoretical foundation for the development of secondary metabolites and the application of B. velezensis Q-426. Our findings provide insights into the genetic characteristics responsible for the bioactivities and potential application of B. velezensis Q-426 as a plant growth-promoting strain in ecological agriculture.


Subject(s)
Anti-Infective Agents , Genome, Bacterial , Humans , Tandem Mass Spectrometry , Anti-Infective Agents/pharmacology , Lipopeptides/pharmacology , Genomics
3.
Phytomedicine ; 121: 155106, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37797432

ABSTRACT

BACKGROUND: Prediabetes, a stage characterized by chronic inflammation, obesity and insulin resistance. Morin and 1-deoxynojirimycin (DNJ) are natural flavonoids and alkaloids extracted from Morus nigra L., exhibiting anti-hyperglycemic efficacy. However, the benefits of DNJ are shadowed by the adverse events, and the mechanism of morin in anti-diabetes remains under investigation. PURPOSE: In this study, the combinational efficacy and mechanisms of DNJ and morin in ameliorating insulin resistance and pre-diabetes were investigated. METHODS: The mice model with prediabetes and Alpha mouse liver-12 (AML-12) cell model with insulin resistance were established. The anti-prediabetic efficacy of the drug combination was determined via analyzing the blood glucose, lipid profiles and inflammatory factors. The application of network pharmacology provided guidance for the research mechanism. RESULTS: In our study, the intervention of morin ameliorated the insulin resistance via activating the Peroxisome proliferator-activated receptor γ (PPARγ). However, PPARγ activation leaded to the lipid accumulation in prediabetic mice. The combination of 5 mg/kg dose of DNJ and 25 mg/kg morin effectively hindered the progression of T2DM by 87.56%, which was achieved via inhibition of Suppressors of cytokine signaling 3 (SOCS3) and promotion of PPARγ as well as SOCS2 expression. Furthermore, this treatment exhibited notable capabilities in combating dyslipidemia and adipogenesis, achieved by suppressing the Cluster of differentiation 36/ Sterol-regulatory element binding proteins-1/ Fatty acid synthetase (CD36/Serbp1/Fas) signaling. CONCLUSION: This research confirmed that the drug combination of DNJ and morin in ameliorating insulin resistance and lipid accumulation, and revealed the potential mechanisms. In summary, the combination of DNJ and morin is an underlying alternative pharmaceutical composition in T2DM prevention.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Prediabetic State , Mice , Animals , Prediabetic State/drug therapy , 1-Deoxynojirimycin , PPAR gamma/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Drug Combinations , Lipids , Insulin
4.
Foods ; 12(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37372523

ABSTRACT

Dendrobium officinale polysaccharide (DOP), which serves as a prebiotic, exhibits a variety of biological activities, including hypoglycemic activities. However, the effects of DOP on diabetes prevention and its hypoglycemic mechanisms are still unclear. In this study, the effects of DOP treatment on the prediabetic mice model were studied and the mechanism was investigated. The results showed that 200 mg/kg/d of DOP reduced the relative risk of type 2 diabetes mellitus (T2DM) from prediabetes by 63.7%. Meanwhile, DOP decreased the level of LPS and inhibited the expression of TLR4 by regulating the composition of the gut microbiota, consequently relieving the inflammation and alleviating insulin resistance. In addition, DOP increased the abundance of SCFA (short chain fatty acid)-producing bacteria in the intestine, increased the levels of intestinal SCFAs, promoted the expression of short-chain fatty acid receptors FFAR2/FFAR3, and increased the secretion of the intestinal hormones GLP-1 and PYY, which helped to repair islet damage, suppress appetite, and improve insulin resistance. Our results suggested that DOP is a promising functional food supplement for the prevention of T2DM.

5.
ACS Nano ; 17(7): 6886-6898, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36947056

ABSTRACT

Probiotic oral delivery has crucial implications in biomedical engineering, but its oral bioavailability remains unsatisfactory because of the limited survival and colonization of probiotics in the harsh gastrointestinal tract. Here, a bacteria-induced encapsulation strategy is achieved by assembling metastable colloids to enhance the oral bioavailability of probiotics. The colloids (NTc) composed of amino-modified poly-ß-cyclodextrin and tannic acid are formed based on the balance of host-guest interaction-driven attraction and electrostatic repulsion between colloids. Negatively charged probiotics electrostatically attract positively charged NTc to break the balance and induce further assembly surrounding the probiotics. Through a facile one-step mixing, 97% of bacteria are rapidly encapsulated into NTc shells within 10 s, with a high utilization rate of feeding colloids of 91%. More importantly, we show that the compact, thick, and positively charged NTc shells synergistically endow the encapsulated probiotics with strong resistance against simulated gastric fluid with an excellent survival rate of up to 19%, 7500 times superior to the commercial enteric material L100. Moreover, owing to the dynamically noncovalent and self-adaptive nature of host-guest interactions, NTc shells support the proliferation of the encapsulated EcN comparable with that of the naked EcN. In vitro and in vivo experiments also confirm that the NTc-encapsulated probiotics possess durable intestinal adhesion, continuous proliferation activity, enhanced oral bioavailability, good oral biosafety, and excellent therapeutic efficacy in a colitis mouse model. This facile bacteria-induced colloidal encapsulation strategy may extend to various microbes as oral bioagents for treating various diseases.


Subject(s)
Colitis , Probiotics , Mice , Animals , Bacteria , Colitis/chemically induced , Colloids
6.
J Agric Food Chem ; 70(39): 12484-12501, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36150176

ABSTRACT

Prediabetes is a critical stage characterized by insulin resistance. Morus nigra L., an edible plant, is widely used in food and nutritive supplements and exhibits various pharmacological activities; however, its therapeutic effects and mechanisms on prediabetes have rarely been reported. In this research, the major components of total flavonoids of M. nigra L. (TFM) were identified, and TFM treatment was found to reduce prediabetes progressing to type 2 diabetes mellitus (T2DM) from 93.75 to 18.75%. The microbiota and next-generation sequencing combined with western blotting in vivo and in vitro demonstrated that TFM and its components ameliorated insulin resistance mediated by the suppressor of cytokine signaling and protein tyrosine phosphatase 1B, which benefited by maintaining intestinal homeostasis and restraining plasma levels of inflammatory factors. This study confirmed the T2DM prevention effect of TFM and revealed the underlying mechanism, setting the stage for the design of functional foods for diabetes prevention.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Morus , Prediabetic State , Animals , Cytokines , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Flavonoids/pharmacology , Inflammation , Insulin , Mice , Plant Extracts/pharmacology , Prediabetic State/drug therapy , Protein Tyrosine Phosphatase, Non-Receptor Type 1
7.
Molecules ; 27(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36014355

ABSTRACT

Metabolic syndrome (MS) is a metabolic disease with multiple complications. Mulberry leaf extract (MLE) is rich in flavonoids and has great potential in alleviating glucose and lipid metabolism disorders. This study evaluated the effect and mechanism of MLE on the alleviation of MS. The components of the MLE were analyzed, and then the regulation of lipid metabolism by MLE in vitro and in vivo was determined. In a hepatocyte model of oleic acid-induced lipid accumulation, it was found that MLE alleviated lipid accumulation and decreased the expression of genes involved in lipogenesis. Furthermore, MLE improved obesity, insulin resistance, plasma lipid profile, and liver function in MS mice after a 15-week intervention. MLE decreased the expression of SREBP1, ACC, and FAS through the AMPK signaling pathway to inhibit lipid synthesis and increase the level of CPT1A to promote lipid decomposition to achieve its hypolipidemic effect. Meanwhile, MLE was also shown to affect the composition of the gut microbiota and the production of short-chain fatty acids, which contributed to the alleviation of lipid accumulation. Our results suggest that MLE can improve MS by improving lipid metabolism through multiple mechanisms and can be developed into dietary supplements for the improvement of MS.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Morus , Animals , Diet, High-Fat , Lipid Metabolism , Lipids , Liver , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Mice , Plant Extracts/metabolism , Plant Extracts/pharmacology
8.
Food Chem ; 394: 133561, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35763904

ABSTRACT

Combination of dietary flavonoid-baicalein and acarbose reduces the risk that prediabetes will develop into type 2 diabetes mellitus; however, the mechanism underlying this effect has not been clarified. In this study, the in vitro culture conditions of intestinal microorganisms from prediabetic mice were optimized to increase over 30% similarity between in vitro cultured and fecal samples. Baicalein and acarbose alone and in combination, and their corresponding starch hydrolysate were assayed by the in vitro model. The results indicated that the combination of baicalein with acarbose decreased gas production by reducing the residual starch ratio in starch hydrolysate and decreasing the dosage of acarbose, and that reducing the relative abundance of gut bacteria correlated with gas production is the main mechanism. This study provided a theoretical foundation for the development of flavonoid dietary supplements to enhance the efficacy of oral hypoglycemic agents with fewer side effects and higher efficacy.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Acarbose/pharmacology , Animals , Flavanones , Flavonoids/pharmacology , Hypoglycemic Agents/pharmacology , Mice , Starch/pharmacology
9.
Fungal Biol ; 126(4): 320-332, 2022 04.
Article in English | MEDLINE | ID: mdl-35314063

ABSTRACT

The co-culture strategy, which mimics natural ecology by constructing an artificial microbial community, is a useful tool to activate the biosynthetic gene clusters to generate new compounds. However, without optimization of fermentation conditions, the antagonism between the microbes often interferes with the production of secondary metabolites. In this study, the fermentation conditions of co-culture of Aspergillus sydowii and Bacillus subtilis were optimized by response surface methodology to increase the production of active metabolites against Staphylococcus aureus. After optimization, the inhibitory rate of the co-culture extract was 74.62%, which was 29.20% higher than that of the initial conditions. Meanwhile, a total of 15 newly biosynthesized metabolites were detected only in optimized co-culture, occupying 13.2% of all detected metabolites. The structures of the 12 metabolites with high variable importance in projection score were elucidated by the established LC-MS/MS approach integrated with various metabonomic tools. Among them, 7 metabolites were newly induced and the content of other 5 metabolites increased by 1.1-2.4 folds in optimized co-culture. The bioassay of metabolites in co-culture against S. aureus indicated that compounds (-)- (7S)- 10-hydroxysydonic acid, serine sydonate and macrolactin U' contributed much to the increment of antibacterial activity. This study demonstrated that optimizing the fermentation conditions of co-culture was beneficial to changing the metabolite profile and effective to induce the biosynthesis of active metabolites.


Subject(s)
Bacillus subtilis , Staphylococcus aureus , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Aspergillus , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Chromatography, Liquid , Coculture Techniques , Microbial Sensitivity Tests , Tandem Mass Spectrometry
10.
J Ethnopharmacol ; 289: 115029, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35077826

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: 1-Deoxynojirimycin (DNJ), the major alkaloid in Morus alba L., is the main effective constituent in "Mulberry twig Alkaloids Tablets" launched in China in 2020. Prediabetes, characterized by insulin resistance, is regarded as the key period for reversing Type 2 diabetes mellitus (T2DM) through lifestyle intervention and glucose-lowering drugs. Besides the excellent activity as an α-glucosidase inhibitor, DNJ also improves insulin sensitivity in T2DM murine models, yet the mechanism is still unclear. Besides, the pharmaceutical effect of DNJ on prediabetes is also undocumented. AIM OF THE STUDY: The aim of this study was to investigate the pharmaceutical effect of DNJ on high-fat and streptozotocin (STZ)-induced prediabetes mice, and to elucidate the mechanism of insulin resistance ameliorated by DNJ. MATERIALS AND METHODS: Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were performed to detect blood glucose level and insulin sensitivity in mice. The levels of circulating lipopolysaccharide (LPS), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) in the plasma of mice were measured by limulus reagent and enzyme-linked immunosorbent assay (ELISA), respectively. Next-generation sequencing (NGS) and intestinal microbiota sequencing were used to screen the alterations in the transcriptome of liver tissues and to assess the differences in intestinal flora composition, respectively. Expression of cytokine signaling pathway inhibitor 3 (SOCS3), insulin receptor substrate (IRS1), p-IRS1 (Tyr896), occludin, and toll like receptor 4 (TLR4)/NF-κB signaling pathway were confirmed by western blotting. RESULTS: Our study revealed that DNJ decreased the blood glucose level and improve insulin sensitivity in prediabetic mice. DNJ significantly reduced the relative risk of T2DM in prediabetic mice by approximately 83.7%. Mechanistically, DNJ treatment suppressed the circulating levels of LPS, IL-6, and TNF-α in plasma and decreased the inflammatory infiltration in liver and colon tissues. DNJ-treatment increased the abundance of Akkermansia, Bifidobacterium, and Lactobacillus, and decreased the abundance of Enterococcaceae and Lachnospiraceae. Moreover, DNJ suppressed the expression of SOCS3 and the activity of TLR4/NF-κB signaling pathway, meanwhile improving the expression of occludin and the ratio of p-IRS1 (Tyr896)/IRS1. CONCLUSIONS: DNJ effectively ameliorates glucose and lipid metabolism in prediabetic mice, and decreased the relative risk of progression into T2DM from prediabetes. The suppressed immune responses play essential roles in the improvement of insulin resistance by DNJ treatment. In conclusion, DNJ from Morus alba L. is a promising alternative agent in T2DM prevention.


Subject(s)
1-Deoxynojirimycin/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Gastrointestinal Microbiome/drug effects , Prediabetic State/drug therapy , 1-Deoxynojirimycin/isolation & purification , Animals , Blood Glucose/drug effects , Diabetes Mellitus, Type 2/prevention & control , Disease Progression , High-Throughput Nucleotide Sequencing , Insulin Resistance , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Morus/chemistry , Streptozocin
11.
J Agric Food Chem ; 69(34): 9822-9836, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34406004

ABSTRACT

Prediabetes is a prevalent metabolic disorder with multiple complications, including nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the combinatorial effect of baicalein, a dietary flavonoid abundant in multiple edible plants, and acarbose on prediabetes-associated NAFLD. Baicalein and its metabolites inhibited de novo lipogenesis (DNL), thereby decreasing lipid accumulation and hepatokine secretion in oleic acid-induced hepatocytes. Carbohydrate restriction, which mimicked the effect of acarbose, led to comparable results. The combinatorial effect of baicalein and acarbose was further verified in prediabetic mice with NAFLD. Through the 16-week intervention, baicalein and acarbose inhibited DNL and improved glucose tolerance, oxidative stress, liver histology, and hepatokine secretion, thereby ameliorating insulin resistance and NAFLD. Our study demonstrated that baicalein enhanced the effect of acarbose on improving NAFLD and explored the underlying multitarget mechanism, laying a theoretical foundation for the development of flavonoid dietary supplements for the simultaneous improvement of NAFLD and prediabetes.


Subject(s)
Non-alcoholic Fatty Liver Disease , Prediabetic State , Acarbose , Animals , Flavanones , Lipogenesis , Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Prediabetic State/drug therapy , Prediabetic State/metabolism
12.
Biomed Pharmacother ; 137: 111306, 2021 May.
Article in English | MEDLINE | ID: mdl-33524786

ABSTRACT

Protective effects of Puerariae flos extract (PFE) on ethanol (EtOH) exposure have been previously verified. This study attempts to explore the protective effects of PEF on EtOH withdrawal models. Sixty male Kunming mice were involved which were randomly divided into five groups (intact control, EtOH group (35-day EtOH exposure), EtOH withdrawal group (28-day exposure + 7-day withdrawal), EtOH withdrawal group + positive control (Deanxit) group, and EtOH withdrawal group + PFE group). The changes of neuropsychological behaviors; hippocampal BDNF expression and CA1 neuronal density; and plasma corticotropin-releasing hormone (CRH), ACTH, and CORT levels were observed. It was found that depression-like behaviors reduced by EtOH exposure and increased by withdrawal under the 28-day EtOH exposure and 7-day withdrawal conditions. In addition, anxiety-like behaviors worsened by EtOH exposure and unchanged by withdrawal. Deanxit and PEF ameliorated such behaviors (vs. withdrawal group). Hippocampal BDNF expression was significantly downregulated by EtOH exposure and upregulated by withdrawal. Deanxit and PEF significantly upregulated the BDNF expression. The hippocampal CA1 neuronal density significantly decreased by EtOH exposure but unchanged by withdrawal and treatments. The plasma CRH, ACTH, and CORT levels show a significant enhancement by EtOH exposure and reduced by withdrawal. They were further reduced by Deanxit and PEF. The protective effects of PEF on EtOH chronic withdrawal mouse models were verified. The results of this study also indicated a complicated scenario of neuropsychological behaviors, hippocampal BDNF expression, and hypothalamic-pituitary-adrenal axis which are affected by the timing of EtOH exposure and withdrawal.


Subject(s)
Alcoholism/drug therapy , Anxiety/prevention & control , CA1 Region, Hippocampal/drug effects , Depression/prevention & control , Drugs, Chinese Herbal/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Pueraria , Substance Withdrawal Syndrome/drug therapy , Adrenocorticotropic Hormone/blood , Alcoholism/metabolism , Alcoholism/pathology , Alcoholism/psychology , Animals , Anxiety/metabolism , Anxiety/pathology , Anxiety/psychology , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/metabolism , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , Corticotropin-Releasing Hormone/blood , Depression/metabolism , Depression/pathology , Depression/psychology , Disease Models, Animal , Drugs, Chinese Herbal/isolation & purification , Hydrocortisone/blood , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/pathology , Male , Mice , Pueraria/chemistry , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/pathology , Substance Withdrawal Syndrome/psychology
13.
Int J Oncol ; 58(1): 100-110, 2021 01.
Article in English | MEDLINE | ID: mdl-33367934

ABSTRACT

Parthenolide has been demonstrated to have anticancer effects against various types of cancer. However, the functional role of parthenolid has yet to be clearly reported in renal cell carcinoma (RCC). The aim of the present study was to investigate the effect of parthenolide in RCC 786­O and ACHN cells. CCK­8 and colony­formation assays were used to observe the proliferation of RCC 786­O and ACHN cells. Migration and invasion abilities were assessed through Transwell assays. The stem cell­like properties of RCC cell lines were evaluated by mammosphere formation assay. Western blot analysis was used to investigate the metastasis and epithelial­mesenchymal transition (EMT) induced by parthenolide on the expression levels of MMP2, MMP9, E­cadherin, N­cadherin, vimentin and snail. The results revealed that when the cells were treated with various concentrations of parthenolide, the rate of proliferation and growth was decreased in 786­O and ACHN cells. The number of invasive cells in a field was approximately 170, 90, 40 and 190, 150, 70 in 786­O and ACHN cells with 0, 4 and 8 µM of parthenolide treatment. MMP­2/­9 expression (P<0.05) was inhibited by parthenolide. The protein levels of E­cadherin were increased (P<0.05) and N­cadherin, vimentin and snail were decreased (P<0.05) by parthenolide treatment. In addition, Parthenolide inhibited the expression of cancer stem cell markers and the PI3K/AKT pathway. The present study confirmed that parthenolide inhibited RCC cell proliferation and metastasis and suppressed the stem cell­like properties of RCC cell lines, which could be a potential strategy to treat RCC. However, further molecular mechanisms of parthenolide in RCC should be observed and reported in the future.


Subject(s)
Carcinoma, Renal Cell/drug therapy , Kidney Neoplasms/drug therapy , Sesquiterpenes/pharmacology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Self Renewal/drug effects , Drug Screening Assays, Antitumor , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Sesquiterpenes/therapeutic use , Snail Family Transcription Factors/antagonists & inhibitors , Snail Family Transcription Factors/metabolism
14.
Biomed Pharmacother ; 96: 1075-1081, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29198923

ABSTRACT

Slow-transit constipation(STC)is a disease characterized by functional gastrointestinal disorder. Common laxatives used in clinical practice against constipation such as Senna have side effects. Enteromorpha(EP)is a common marine alga, and the polysaccharide extracted from EP has been reported possessing anti-cancer and anti-inflammation effects. The aim of this study is to investigate the effects of EP and Polysaccharides from Enteromorpha (PEP) on loperamide induced constipated mice model and illustrating mechanism of action. We investigated the effect of EP and PEP on fecal water content, defecation frequency and gastrointestinal transit (GI) time of loperamide-induced STC mice. In addition, serum Nitric Oxide (NO) content and vasoactive intestinal peptide receptor1 (VIPR1) as well as serotonin receptor (5-HT4) expression in the distal colon were analyzed. Furthermore, we determined the role of EP and PEP on microbiota distribution using stool genomic 16S rRNA sequencing. EP and PEP significantly enhanced intestinal motility function, and alleviated constipation associated intestinal inflammation. Moreover, EP and PEP significantly decreased serum NO concentration, down-regulated VIPR1 expression and up-regulated 5-HT4 expression in distal colon. Genomic stool DNA MiSeq Sequencing Analysis of microbiota community structures and distribution revealed that intestinal microecological changes caused by constipation recovered after both EP and PEP treatment. Our results indicate that EP and PEP are potent natural products which could be suggested in constipation therapy strategies.


Subject(s)
Constipation/chemically induced , Constipation/drug therapy , Loperamide/toxicity , Plant Extracts/therapeutic use , Polysaccharides/therapeutic use , Ulva , Animals , Antidiarrheals/toxicity , Constipation/metabolism , Female , Gastrointestinal Transit/drug effects , Gastrointestinal Transit/physiology , Laxatives/isolation & purification , Laxatives/pharmacology , Laxatives/therapeutic use , Mice , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Polysaccharides/isolation & purification , Polysaccharides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...