Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanobiotechnology ; 22(1): 303, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822376

ABSTRACT

Radiation-induced intestinal injury is the most common side effect during radiotherapy of abdominal or pelvic solid tumors, significantly impacting patients' quality of life and even resulting in poor prognosis. Until now, oral application of conventional formulations for intestinal radioprotection remains challenging with no preferred method available to mitigate radiation toxicity in small intestine. Our previous study revealed that nanomaterials derived from spore coat of probiotics exhibit superior anti-inflammatory effect and even prevent the progression of cancer. The aim of this work is to determine the radioprotective effect of spore coat (denoted as spore ghosts, SGs) from three clinically approved probiotics (B.coagulans, B.subtilis and B.licheniformis). All the three SGs exhibit outstanding reactive oxygen species (ROS) scavenging ability and excellent anti-inflammatory effect. Moreover, these SGs can reverse the balance of intestinal flora by inhibiting harmful bacteria and increasing the abundance of Lactobacillus. Consequently, administration of SGs significantly reduce radiation-induced intestinal injury by alleviating diarrhea, preventing X-ray induced apoptosis of small intestinal epithelial cells and promoting restoration of barrier integrity in a prophylactic study. Notably, SGs markedly improve weight gain and survival of mice received total abdominal X-ray radiation. This work may provide promising radioprotectants for efficiently attenuating radiation-induced gastrointestinal syndrome and promote the development of new intestinal predilection.


Subject(s)
Probiotics , Radiation-Protective Agents , Spores, Bacterial , Animals , Probiotics/pharmacology , Mice , Administration, Oral , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use , Radiation-Protective Agents/chemistry , Spores, Bacterial/radiation effects , Radiation Injuries/drug therapy , Reactive Oxygen Species/metabolism , Intestine, Small/microbiology , Intestine, Small/radiation effects , Intestine, Small/pathology , Humans , Apoptosis/drug effects , Male , Gastrointestinal Microbiome/drug effects , Intestines/radiation effects , Intestines/microbiology , Intestines/pathology , Radiation Injuries, Experimental/pathology
2.
Heliyon ; 10(9): e29995, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38694098

ABSTRACT

Rumor governance is an important guarantee for social stability and public safety. Based on the life cycle and crisis cycle model, this paper conducts a synergistic analysis of China's rumor governance policies and regulations and the core scientific research literature on rumor governance in WOS and CNKI. In this paper, we use the TF-IDF algorithm to count the word frequencies of 326 policy and regulation texts, the Jieba-RoBERTa-Kmeans model to cluster high-frequency keywords, and CiteSpace software and the LLR clustering algorithm are utilized to extract and cluster keywords from 391 documents in the WOS database and from 703 documents in the CNKI database. Based on the synergistic analysis of the life cycle model, it is found that the research on policies and regulations precedes the research on literature, and both are in the period of refinement.Based on the synergistic analysis using the co-occurrence comparison of subject terms in the crisis cycle model, it is found that there is a lack of research in the stages of prevention, monitoring, and governance, and this paper proposes the systematic governance mechanism and strategy for crisis resolution that conforms to the trend of life cycle evolution and is synergistic with policy and literature. This study has only selected Chinese policies and regulations, and the proposed governance strategies have not yet been verified in practice; future research can expand the scope and depth of the study and conduct empirical research and pilot projects.

3.
Adv Mater ; 36(19): e2312938, 2024 May.
Article in English | MEDLINE | ID: mdl-38320218

ABSTRACT

Single-component organic solar cells (SCOSCs) with covalently bonding donor and acceptor are becoming increasingly attractive because of their superior stability over traditional multicomponent blend organic solar cells (OSCs). Nevertheless, the efficiency of SCOSCs is far behind the state-of-the-art multicomponent OSCs. Herein, by combination of the advantages of three-component and single-component devices, this work reports an innovative three-in-one strategy to boost the performance of SCOSCs. In this three-in-one strategy, three independent components (PM6, D18, and PYIT) are covalently linked together to create a new single-component active layer based on ternary conjugated block copolymer (TCBC) PM6-D18-b-PYIT by a facile polymerization. Precisely manipulating the component ratios in the polymer chains of PM6-D18-b-PYIT is able to broaden light utilization, promote charge dynamics, optimize, and stabilize film morphology, contributing to the simultaneously enhanced efficiency and stability of the SCOSCs. Ultimately, the PM6-D18-b-PYIT-based device exhibits a power conversion efficiency (PCE) of 14.89%, which is the highest efficiency of the reported SCOSCs. Thanks to the aggregation restriction of each component and chain entanglement in the three-in-one system, the PM6-D18-b-PYIT-based SCOSC displays significantly higher stability than the corresponding two-component (PM6-D18:PYIT) and three-component (PM6:D18:PYIT). These results demonstrate that the three-in-one strategy is facile and promising for developing SCOSCs with superior efficiency and stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...