Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 710, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824241

ABSTRACT

BACKGROUND: Circular RNA (circRNA) is a key player in regulating the multidirectional differentiation of stem cells. Previous research by our group found that the blue light-emitting diode (LED) had a promoting effect on the osteogenic/odontogenic differentiation of human stem cells from apical papilla (SCAPs). This research aimed to investigate the differential expression of circRNAs during the osteogenic/odontogenic differentiation of SCAPs regulated by blue LED. MATERIALS AND METHODS: SCAPs were divided into the irradiation group (4 J/cm2) and the control group (0 J/cm2), and cultivated in an osteogenic/odontogenic environment. The differentially expressed circRNAs during osteogenic/odontogenic differentiation of SCAPs promoted by blue LED were detected by high-throughput sequencing, and preliminarily verified by qRT-PCR. Functional prediction of these circRNAs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the circRNA-miRNA-mRNA networks were also constructed. RESULTS: It showed 301 circRNAs were differentially expressed. GO and KEGG analyses suggested that these circRNAs were associated with some signaling pathways related to osteogenic/odontogenic differentiation. And the circRNA-miRNA-mRNA networks were also successfully constructed. CONCLUSION: CircRNAs were involved in the osteogenic/odontogenic differentiation of SCAPs promoted by blue LED. In this biological process, circRNA-miRNA-mRNA networks served an important purpose, and circRNAs regulated this process through certain signaling pathways.


Subject(s)
Cell Differentiation , Dental Papilla , Light , Odontogenesis , Osteogenesis , RNA, Circular , Stem Cells , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Osteogenesis/genetics , Cell Differentiation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Odontogenesis/genetics , Dental Papilla/cytology , Dental Papilla/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Ontology , Cells, Cultured , Gene Expression Profiling/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing/methods , Gene Expression Regulation/radiation effects , Blue Light
2.
J Periodontal Res ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845170

ABSTRACT

AIMS: The study aimed to investigate the role of miR-146a-5p in osteogenesis of hPDLSCs irradiated with low-energy red LEDs. METHODS: After irradiation with 5 J/cm2 red LED, miR-146a-5p expression was detected by real-time quantitative polymerase chain reaction (RT-qPCR), and osteogenic markers expression was determined by RT-qPCR and Western blotting. Alkaline phosphatase (ALP) activity was assessed by ALP staining, and mineralization was assessed by Alizarin Red staining, respectively. Lentiviral vectors were designed to regulate miR-146a-5p expression. Dual-luciferase reporter assay was performed to confirm the targeted relationship between miR-146a-5p and MAPK1. Short hairpin RNA (shRNA) was used to regulate MAPK1 expression. RESULTS: RT-qPCR and western blotting revealed that 5 J/cm2 irradiation elevated the levels of the osteogenic markers osterix (OSX) and bone sialoprotein (BSP) in hPDLSCs. miR-146a-5p is downregulated in hPDLSCs under the low-energy red LED light irradiation. miR-146a-5p underexpression markedly promoted the osteogenic potential of hPDLSCs. miR-146a-5p targeted MAPK1. 5 J/cm2 red LED irradiation rescued the inhibitory effects of upregulated miR-146a-5p on osteogenic differentiation, and the positive influence of red LED irradiation could be reversed by downregulated MAPK1. CONCLUSION: These findings confirm that miR-146a-5p is involved in the effect of LED irradiation on the osteogenic differentiation of hPDLSCs by targeting MAPK1. Red LED irradiation may be a potential clinical adjunct therapy for periodontal regeneration.

3.
Mol Biol Rep ; 51(1): 644, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727958

ABSTRACT

BACKGROUND: MicroRNAs are differentially expressed in periodontitis tissues. They are involved in cellular responses to inflammation and can be used as markers for diagnosing periodontitis. Microarray analysis showed that the expression level of microRNA-671-5p in periodontal tissues of patients with periodontitis was increased. In this study, we investigated the mechanism of action of microRNA-671-5p in human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. METHODS AND RESULTS: HPDLSCs were treated with lipopolysaccharide (LPS) to establish an inflammation model. The cell survival rate was determined using the cell counting kit-8 (CCK8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the expression of microRNA-671-5p and dual-specificity phosphatase (DUSP) 8 proteins, respectively, Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were detected using qRT-PCR and Enzyme-linked immunosorbent assay (ELISA). A dual-luciferase reporter system was employed to determine the relationship between micoRNA-671-5p and DUSP8 expression. Activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway was confirmed using western blot analysis. Following the treatment of hPDLSCs with LPS, the expression levels of microRNA-671-5p in hPDLSCs were increased, cell viability decreased, and the expression of inflammatory factors displayed an increasing trend. MicroRNA-671-5p targets and binds to DUSP8. Silencing microRNA-671-5p or overexpressing DUSP8 can improve cell survival rate and reduce inflammatory responses. When DUSP8 was overexpressed, the expression of p-p38 was reduced. CONCLUSIONS: microRNA-671-5p targets DUSP8/p38 MAPK pathway to regulate LPS-induced proliferation and inflammation in hPDLSCs.


Subject(s)
Dual-Specificity Phosphatases , Inflammation , Lipopolysaccharides , MicroRNAs , Periodontal Ligament , Stem Cells , p38 Mitogen-Activated Protein Kinases , Humans , Cell Survival/genetics , Cell Survival/drug effects , Cells, Cultured , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Periodontal Ligament/metabolism , Periodontal Ligament/cytology , Periodontitis/genetics , Periodontitis/metabolism , Periodontitis/pathology , Signal Transduction/genetics , Stem Cells/metabolism
4.
J Craniofac Surg ; 35(4): 1045-1051, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38363300

ABSTRACT

This study aims to compare flaps at different sites in treating soft tissue defects after oral cancer surgery and improving patients' quality of life (QoL). Databases were searched until September 2023. The extracted data included the scores of chewing, swallowing, speech, mood, and appearance based on the University of Washington QoL questionnaire, version 4. Two types of free flaps and 2 types of pedicled tissue flaps were included. The free flaps were the forearm free flap (FFF) and anterolateral thigh flap, and the pedicled tissue flaps were the submental artery island flap and pectoralis major myocutaneous flap (PMMF). Compared with FFF, there was no significant difference in the scores of chewing, swallowing, speech, and mood among anterolateral thigh, submental artery island flap, and PMMF, and PMMF generally had a higher score than FFF only in terms of appearance, with statistical significance. There is no significant difference in chewing, swallowing, speech, and mood between flaps from different sites in repairing postoperative soft tissue defects of oral cancer. Therefore, the widely used FFF may be the preferred choice considering the QoL of patients after oral cancer surgery.


Subject(s)
Free Tissue Flaps , Mouth Neoplasms , Quality of Life , Surgical Flaps , Humans , Mouth Neoplasms/surgery , Plastic Surgery Procedures/methods , Mastication/physiology , Deglutition/physiology , Speech/physiology
5.
Lasers Med Sci ; 38(1): 267, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37981584

ABSTRACT

The application of blue light (400-480 nm) in photobiotherapy remains controversial. This systematic review aimed to collect and analyze the biological effects of blue light-emitting diode (LED) on mesenchymal stem cells (MSCs). Inclusion and exclusion criteria were formulated, and relevant English articles from January 1982 to September 2022 were searched in PubMed, Scopus, and Web of Science. Nine articles with a medium (n = 4) to low (n = 5) risk of bias were included. Most of the MSCs reported were derived from human tissue; only one article used MSCs derived from mouse. The wavelength of the LED used was in the 400-480 nm range, and the irradiation modes were continuous (n = 8) and pulse waves (n = 1). A chiral polarizer was used in one such study in which the irradiance was 14 mW/cm2 and the irradiation time was 24 h. The energy densities used in other studies were between 0.378 and 72 J/cm2, and the irradiation times were between 10 and 3600 s. Blue LED light can inhibit proliferation and promote differentiation of MSCs in an appropriate energy density range, which may be related to the activation of transient receptor potential vanilloid 1 (TRPV1). Additionally, polarized light may reduce the toxic effects of blue light on MSCs. However, the heterogeneity of the design schemes and LED parameters, as well as the small number of studies, limited the conclusiveness of the review. Therefore, further studies are needed to determine the optimal irradiation strategy for promoting MSC function.


Subject(s)
Mesenchymal Stem Cells , Animals , Humans , Mice , Cell Differentiation , Heart Rate , Light
SELECTION OF CITATIONS
SEARCH DETAIL
...