Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.474
Filter
1.
Front Neurol ; 15: 1398142, 2024.
Article in English | MEDLINE | ID: mdl-38984035

ABSTRACT

Background: Large Hemispheric Infarction (LHI) poses significant mortality and morbidity risks, necessitating predictive models for in-hospital mortality. Previous studies have explored LHI progression to malignant cerebral edema (MCE) but have not comprehensively addressed in-hospital mortality risk, especially in non-decompressive hemicraniectomy (DHC) patients. Methods: Demographic, clinical, risk factor, and laboratory data were gathered. The population was randomly divided into Development and Validation Groups at a 3:1 ratio, with no statistically significant differences observed. Variable selection utilized the Bonferroni-corrected Boruta technique (p < 0.01). Logistic Regression retained essential variables, leading to the development of a nomogram. ROC and DCA curves were generated, and calibration was conducted based on the Validation Group. Results: This study included 314 patients with acute anterior-circulating LHI, with 29.6% in the Death group (n = 93). Significant variables, including Glasgow Coma Score, Collateral Score, NLR, Ventilation, Non-MCA territorial involvement, and Midline Shift, were identified through the Boruta algorithm. The final Logistic Regression model led to a nomogram creation, exhibiting excellent discriminative capacity. Calibration curves in the Validation Group showed a high degree of conformity with actual observations. DCA curve analysis indicated substantial clinical net benefit within the 5 to 85% threshold range. Conclusion: We have utilized NIHSS score, Collateral Score, NLR, mechanical ventilation, non-MCA territorial involvement, and midline shift to develop a highly accurate, user-friendly nomogram for predicting in-hospital mortality in LHI patients. This nomogram serves as valuable reference material for future studies on LHI patient prognosis and mortality prevention, while addressing previous research limitations.

2.
BMC Nurs ; 23(1): 456, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965551

ABSTRACT

BACKGROUND: Moral distress seriously affects professional nurses, and a number of instruments have been developed to measure the level of moral distress. The moral distress thermometer (MDT) is one of the commonly used instruments that can rapidly measure real-time moral distress; however, it remains unclear whether it is still useful in the Chinese cultural context. AIM: This study aimed to adapt and validate the MDT among Chinese registered nurses. RESEARCH DESIGN: An online, cross-sectional, survey study of adapting and validating Chinese version of MDT. PARTICIPANTS AND RESEARCH CONTEXT: A total of 182 registered nurses effectively finished this survey. The correlation between MDT score and the score of the moral distress scale-revised version (MDS-R) was used for evaluating convergent validity, and MDT scores of registered nurses who working in different departments and who made different actions to the final question of the MDS-R were compared by using one-way ANOVA to evaluate construct validity. ETHICAL CONSIDERATIONS: The Ethics Committee of Chongqing Traditional Chinese Medicine Hospital approved this study. RESULTS: The Chinese version of MDT was described as relevant to measure moral distress, with a reported item-level content validity index (I-CVI) and scale-level CVI (S-CVI) of 1. The mean MDT score and mean MDS-R score were 2.54 and 38.66, respectively, and the correlation between these two scores was significantly moderate (r = 0.41). Nurses working different departments reported different levels of moral distress, and those working in intensive care unit reported the highest level of moral distress than those working in other departments (p = 0.04). The MDT scores between nurses who presented different actions to their position were also significantly different, and those who had ever left and those who had considered leaving but did not leave reported significantly higher moral distress. CONCLUSION: The MDT is a reliable, valid, and easy-to-use instrument to rapidly measure the real-time moral distress of registered nurses in China.

3.
Oncologist ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970465

ABSTRACT

On August 11, 2022, FDA granted accelerated approval to fam-trastuzumab deruxtecan-nxki (DS-8201a, T-DXd, ENHERTU, Daiichi Sankyo) for adult patients with unresectable or metastatic non-small cell lung cancer (NSCLC) whose tumors have activating human epidermal growth factor receptor 2 (HER2) mutations, as detected by an FDA-approved test, and who have received a prior systemic therapy. The approval was based on a prespecified interim analysis of DESTINY-Lung02 (Study U206), a multi-center, randomized, dose-optimization trial in patients with NSCLC harboring activating HER2-mutations. At the approved dose of 5.4 mg/kg given intravenously every 3 weeks, the overall response rate (ORR) was 58% (95% confidence interval [CI]: 43, 71). The median duration of response was 8.7 months (95% CI: 7.1, not estimable). These results were consistent with response rates observed at the 6.4 mg/kg dose level. The most common (≥ 20%) adverse reactions were nausea, constipation, decreased appetite, vomiting, fatigue, and alopecia. The rate of interstitial lung disease (ILD) or pneumonitis was 6% at the 5.4 mg/kg dose level and 14% at the 6.4 mg/kg dose level. In the setting of similar efficacy and reduced toxicity, approval was granted for the 5.4 mg/kg dose level. The applicant conducted a randomized, dose-optimization study with guidance from the FDA Oncology Center of Excellence's Project Optimus. This is the first approval of a targeted therapy for HER2-mutated NSCLC.

4.
Genome Biol ; 25(1): 185, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004763

ABSTRACT

BACKGROUND: We recently identified ~ 10,000 correlated regions of systemic interindividual epigenetic variation (CoRSIVs) in the human genome. These methylation variants are amenable to population studies, as DNA methylation measurements in blood provide information on epigenetic regulation throughout the body. Moreover, establishment of DNA methylation at human CoRSIVs is labile to periconceptional influences such as nutrition. Here, we analyze publicly available whole-genome bisulfite sequencing data on multiple tissues of each of two Holstein cows to determine whether CoRSIVs exist in cattle. RESULTS: Focusing on genomic blocks with ≥ 5 CpGs and a systemic interindividual variation index of at least 20, our approach identifies 217 cattle CoRSIVs, a subset of which we independently validate by bisulfite pyrosequencing. Similar to human CoRSIVs, those in cattle are strongly associated with genetic variation. Also as in humans, we show that establishment of DNA methylation at cattle CoRSIVs is particularly sensitive to early embryonic environment, in the context of embryo culture during assisted reproduction. CONCLUSIONS: Our data indicate that CoRSIVs exist in cattle, as in humans, suggesting these systemic epigenetic variants may be common to mammals in general. To the extent that individual epigenetic variation at cattle CoRSIVs affects phenotypic outcomes, assessment of CoRSIV methylation at birth may become an important tool for optimizing agriculturally important traits. Moreover, adjusting embryo culture conditions during assisted reproduction may provide opportunities to tailor agricultural outcomes by engineering CoRSIV methylation profiles.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Cattle , Animals , Humans , CpG Islands , Genetic Variation
5.
Mil Med Res ; 11(1): 46, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992778

ABSTRACT

BACKGROUND: Subarachnoid hemorrhage (SAH) is a subtype of hemorrhagic stroke characterized by high mortality and low rates of full recovery. This study aimed to investigate the epidemiological characteristics of SAH between 1990 and 2021. METHODS: Data on SAH incidence, mortality, and disability-adjusted life-years (DALYs) from 1990 to 2021 were obtained from the Global Burden of Disease Study (GBD) 2021. Estimated annual percentage changes (EAPCs) were calculated to evaluate changes in the age-standardized rate (ASR) of incidence and mortality, as well as trends in SAH burden. The relationship between disease burden and sociodemographic index (SDI) was also analyzed. RESULTS: In 2021, the incidence of SAH was found to be 37.09% higher than that in 1990; however, the age-standardized incidence rates (ASIRs) showed a decreased [EAPC: -1.52; 95% uncertainty interval (UI) -1.66 to -1.37]. Furthermore, both the number and rates of deaths and DALYs decreased over time. It was observed that females had lower rates compared to males. Among all regions, the high-income Asia Pacific region exhibited the highest ASIR (14.09/100,000; 95% UI 12.30/100,000 - 16.39/100,000) in 2021, with an EPAC for ASIR < 0 indicating decreasing trend over time for SAH ASIR. Oceania recorded the highest age-standardized mortality rates (ASMRs) and age-standardized DALYs rates among all regions in 2021 at values of respectively 8.61 (95% UI 6.03 - 11.95) and 285.62 (95% UI 209.42 - 379.65). The burden associated with SAH primarily affected individuals aged between 50 - 69 years old. Metabolic risks particularly elevated systolic blood pressure were identified as the main risk factors contributing towards increased disease burden associated with SAH when compared against environmental or occupational behavioral risks evaluated within the GBD framework. CONCLUSIONS: The burden of SAH varies by gender, age group, and geographical region. Although the ASRs have shown a decline over time, the burden of SAH remains significant, especially in regions with middle and low-middle SDI levels. High systolic blood pressure stands out as a key risk factor for SAH. More specific supportive measures are necessary to alleviate the global burden of SAH.


Subject(s)
Global Burden of Disease , Subarachnoid Hemorrhage , Humans , Subarachnoid Hemorrhage/epidemiology , Male , Female , Incidence , Middle Aged , Aged , Adult , Global Burden of Disease/trends , Disability-Adjusted Life Years/trends , Global Health/statistics & numerical data , Aged, 80 and over
6.
Bioinformatics ; 40(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954836

ABSTRACT

MOTIVATION: Accurately detecting pathogenic microorganisms requires effective primers and probe designs. Literature-derived primers are a valuable resource as they have been tested and proven effective in previous research. However, manually mining primers from published texts is time-consuming and limited in species scop. RESULTS: To address these challenges, we have developed MiPRIME, a real-time Microbial Primer Mining platform for primer/probe sequences extraction of pathogenic microorganisms with three highlights: (i) comprehensive integration. Covering >40 million articles and 548 942 organisms, the platform enables high-frequency microbial gene discovery from a global perspective, facilitating user-defined primer design and advancing microbial research. (ii) Using a BioBERT-based text mining model with 98.02% accuracy, greatly reducing information processing time. (iii) Using a primer ranking score, PRscore, for intelligent recommendation of species-specific primers. Overall, MiPRIME is a practical tool for primer mining in the pan-microbial field, saving time and cost of trial-and-error experiments. AVAILABILITY AND IMPLEMENTATION: The web is available at {{https://www.ai-bt.com}}.


Subject(s)
DNA Primers , Data Mining , Data Mining/methods , Software , Bacteria/genetics , Bacteria/classification
7.
J Biomater Sci Polym Ed ; : 1-17, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953307

ABSTRACT

In this study, to address the defects of sodium alginate (SA), such as its susceptibility to disintegration, silica was coated on the outer layer of sodium alginate hydrogel beads in order to improve its swelling and slow-release properties. Tetraethyl orthosilicate (TEOS) was used as the hydrolyzed precursor, and the solution of silica precursor was prepared by sol-gel reaction under acidic conditions. Then SA-silica hydrogel beads prepared by ionic crosslinking method were immersed into the SiO2 precursor solution to prepare SA-silica hydrogel beads. The chemical structure and morphology of the hydrogel beads were characterized by XRD, FTIR, and SEM, and the results showed that the surface of SA-silica beads was successfully encapsulated with the outer layer of SiO2, and the surface was smooth and dense. The swelling experiments showed that the swelling performance effectively decreased with the increase of TEOS molar concentration, and the maximum swelling ratio of the hydrogel beads decreased from 41.07 to 14.3, and the time to reach the maximum swelling ratio was prolonged from 4 h to 8 h. The sustained-release experiments showed that the SA-silica hydrogel beads possessed a good pH sensitivity, and the time of sustained-release was significantly prolonged in vitro. Hemolysis and cytotoxicity experiments showed that the SA-silica hydrogel beads were biocompatible when the TEOS molar concentration was lower than 0.375 M. The SA-silica-2 hydrogel beads had good biocompatibility, swelling properties, and slow-release properties at the same time.

8.
FASEB J ; 38(13): e23794, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38967258

ABSTRACT

Obesity is often associated with low-grade inflammation. The incidence of obesity has increased annually worldwide, which seriously affects human health. A previous study indicated that long noncoding RNA SNHG12 was downregulated in obesity. Nevertheless, the role of SNHG12 in obesity remains to be elucidated. In this study, qRT-PCR, western blot, and ELISA were utilized to examine the gene and protein expression. Flow cytometry was employed to investigate the M2 macrophage markers. RNA pull-down assay and RIP were utilized to confirm the interactions of SNHG12, hnRNPA1, and HDAC9. Eventually, a high-fat diet-fed mouse model was established for in vivo studies. SNHG12 overexpression suppressed adipocyte inflammation and insulin resistance and promoted M2 polarization of macrophages that was caused by TNF-α treatment. SNHG12 interacted with hnRNPA1 to downregulate HDAC9 expression, which activated the Nrf2 signaling pathway. HDAC9 overexpression reversed the effect of SNHG12 overexpression on inflammatory response, insulin resistance, and M2 phenotype polarization. Overexpression of SNHG12 improved high-fat diet-fed mouse tissue inflammation. This study revealed the protective effect of SNHG12 against adipocyte inflammation and insulin resistance. This result further provides a new therapeutic target for preventing inflammation and insulin resistance in obesity.


Subject(s)
Adipocytes , Diet, High-Fat , Histone Deacetylases , Inflammation , Insulin Resistance , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Obesity , RNA, Long Noncoding , Repressor Proteins , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , Inflammation/metabolism , Inflammation/genetics , Adipocytes/metabolism , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Diet, High-Fat/adverse effects , Male , Obesity/metabolism , Obesity/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Signal Transduction , Macrophages/metabolism
9.
Front Mol Biosci ; 11: 1340611, 2024.
Article in English | MEDLINE | ID: mdl-39027131

ABSTRACT

Background: The ongoing global health crisis of COVID-19, and particularly the challenges posed by recurrent infections of the Omicron variant, have significantly strained healthcare systems worldwide. There is a growing body of evidence indicating an increased susceptibility to Omicron infection in patients suffering from Acute Kidney Injury (AKI). However, the intricate molecular interplay between AKI and Omicron variant of COVID-19 remains largely enigmatic. Methods: This study employed a comprehensive analysis of human RNA sequencing (RNA-seq) and microarray datasets to identify differentially expressed genes (DEGs) associated with Omicron infection in the context of AKI. We engaged in functional enrichment assessments, an examination of Protein-Protein Interaction (PPI) networks, and advanced network analysis to elucidate the cellular signaling pathways involved, identify critical hub genes, and determine the relevant controlling transcription factors and microRNAs. Additionally, we explored protein-drug interactions to highlight potential pharmacological interventions. Results: Our investigation revealed significant DEGs and cellular signaling pathways implicated in both Omicron infection and AKI. We identified pivotal hub genes, including EIF2AK2, PLSCR1, GBP1, TNFSF10, C1QB, and BST2, and their associated regulatory transcription factors and microRNAs. Notably, in the murine AKI model, there was a marked reduction in EIF2AK2 expression, in contrast to significant elevations in PLSCR1, C1QB, and BST2. EIF2AK2 exhibited an inverse relationship with the primary AKI mediator, Kim-1, whereas PLSCR1 and C1QB demonstrated strong positive correlations with it. Moreover, we identified potential therapeutic agents such as Suloctidil, Apocarotenal, 3'-Azido-3'-deoxythymidine, among others. Our findings also highlighted a correlation between the identified hub genes and diseases like myocardial ischemia, schizophrenia, and liver cirrhosis. To further validate the credibility of our data, we employed an independent validation dataset to verify the hub genes. Notably, the expression patterns of PLSCR1, GBP1, BST2, and C1QB were consistent with our research findings, reaffirming the reliability of our results. Conclusion: Our bioinformatics analysis has provided initial insights into the shared genetic landscape between Omicron COVID-19 infections and AKI, identifying potential therapeutic targets and drugs. This preliminary investigation lays the foundation for further research, with the hope of contributing to the development of innovative treatment strategies for these complex medical conditions.

10.
J Med Virol ; 96(7): e29805, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39011773

ABSTRACT

Heterogeneous nuclear protein U (HNRNPU) plays a pivotal role in innate immunity by facilitating chromatin opening to activate immune genes during host defense against viral infection. However, the mechanism by which HNRNPU is involved in Hepatitis B virus (HBV) transcription regulation through mediating antiviral immunity remains unknown. Our study revealed a significant decrease in HNRNPU levels during HBV transcription, which depends on HBx-DDB1-mediated degradation. Overexpression of HNRNPU suppressed HBV transcription, while its knockdown effectively promoted viral transcription, indicating HNRNPU as a novel host restriction factor for HBV transcription. Mechanistically, HNRNPU inhibits HBV transcription by activating innate immunity through primarily the positive regulation of the interferon-stimulating factor 2'-5'-oligoadenylate synthetase 3, which mediates an ribonuclease L-dependent mechanism to enhance innate immune responses. This study offers new insights into the host immune regulation of HBV transcription and proposes potential targets for therapeutic intervention against HBV infection.


Subject(s)
2',5'-Oligoadenylate Synthetase , Hepatitis B virus , Immunity, Innate , Transcription, Genetic , Humans , Hepatitis B virus/immunology , Hepatitis B virus/genetics , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics , Hep G2 Cells , Hepatitis B/immunology , Hepatitis B/virology , Hepatitis B/genetics , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism , Viral Regulatory and Accessory Proteins/immunology , Trans-Activators
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124539, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38870693

ABSTRACT

The quality of the grains during the fumigation process can significantly affect the flavour and nutritional value of Shanxi aged vinegar (SAV). Hyperspectral imaging (HSI) was used to monitor the extent of fumigated grains, and it was combined with chemometrics to quantitatively predict three key physicochemical constituents: moisture content (MC), total acid (TA) and amino acid nitrogen (AAN). The noise reduction effects of five spectral preprocessing methods were compared, followed by the screening of optimal wavelengths using competitive adaptive reweighted sampling. Support vector machine classification was employed to establish a model for discriminating fumigated grains, and the best recognition accuracy reached 100%. Furthermore, the results of partial least squares regression slightly outperformed support vector machine regression, with correlation coefficient for prediction (Rp) of 0.9697, 0.9716, and 0.9098 for MC, TA, and AAN, respectively. The study demonstrates that HSI can be employed for rapid non-destructive monitoring and quality assessment of the fumigation process in SAV.


Subject(s)
Acetic Acid , Algorithms , Fumigation , Hyperspectral Imaging , Spectroscopy, Near-Infrared , Fumigation/methods , Spectroscopy, Near-Infrared/methods , Acetic Acid/chemistry , Hyperspectral Imaging/methods , Chemometrics/methods , Support Vector Machine , Least-Squares Analysis
12.
Food Chem ; 458: 140213, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38943951

ABSTRACT

This work investigated the feasibility of applying headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS) combining olfactory visualization for flavor characterization of black garlic. Volatile organic compounds (VOCs) analysis was performed to select important differential VOCs during black garlic processing. A multi-channels nanocomposite CSA assembled with two porous metal-organic frameworks was then developed to characterize flavor profiles changes during black garlic processing, and garlic samples during processing could be divided into five clusters, consistent with VOCs analysis. Artificial neural network (ANN) model outperformed other pattern recognition methods in discriminating processing stages. Furthermore, SVR model for odor sensory scores with the correlation coefficient for prediction set of 0.8919 exhibited a better performance than PLS model, indicating a preferable prediction ability for odor quality. This work demonstrated that the nanocomposite CSA combining appropriate chemometrics can offer an effective tool for objectively and rapidly characterizing flavor quality of black garlic or other food matrixes.

13.
Sci Rep ; 14(1): 13516, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866797

ABSTRACT

Diarrhea and constipation are common health concerns in children. Numerous studies have identified strong association between gut microbiota and digestive-related diseases. But little is known about the gut microbiota that simultaneously affects both diarrhea and constipation or their potential regulatory mechanisms. Stool samples from 618 children (66 diarrhea, 138 constipation, 414 healthy controls) aged 0-3 years were collected to investigate gut microbiota changes using 16S rRNA sequencing. Compared with healthy, children with diarrhea exhibited a significant decrease in microbial diversity, while those with constipation showed a marked increase (p < 0.05). Significantly, our results firstly Ruminococcus increased in constipation (p = 0.03) and decreased in diarrhea (p < 0.01) compared to healthy controls. Pathway analysis revealed that Ruminococcus highly involved in the regulation of five common pathways (membrane transport, nervous system, energy metabolism, signal transduction and endocrine system pathways) between diarrhea and constipation, suggesting a potential shared regulatory mechanism. Our finding firstly reveals one core microorganisms that may affect the steady balance of the gut in children with diarrhea or constipation, providing an important reference for potential diagnosis and treatment of constipation and diarrhea.


Subject(s)
Constipation , Diarrhea , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Humans , Constipation/microbiology , Diarrhea/microbiology , Child, Preschool , Infant , Male , Female , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Infant, Newborn , China , Case-Control Studies , East Asian People
14.
Hum Immunol ; 85(4): 110830, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38861759

ABSTRACT

BACKGROUND: Immunoglobulin A nephropathy (IgAN) is an autoimmune disease characterized by the production of galactose­deficient IgA1 (Gd­IgA1) and the deposition of immune complexes in the kidney. Exploring the landscape of immune dysregulation in IgAN is valuable for pathogenesis and disease treatment. We conducted Mendelian randomization (MR) to assess the causal correlations between inflammation and IgAN. METHODS: Based on available genetic datasets, we investigated potential causal links between inflammation and the risk of IgAN using two-sample MR. We used genome-wide association study (GWAS) summary statistics of 5 typical inflammation markers, 41 inflammatory cytokines, and 731 immune cell signatures, accessed from the public GWAS Catalog. The primary method employed for MR analysis was Inverse Variance Weighted (IVW). To confirm consistency across results, four supplementary MR methods were also conducted: MR-Egger, Weighted Median, Weighted Mode, and Simple Mode. To assess pleiotropy, we used the MR-Egger regression intercept test and Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test. Cochrane's Q statistic was applied to evaluate heterogeneity. Additionally, the stability of the MR findings was verified through the leave-one-out sensitivity analysis. RESULTS: This study revealed that interleukin-7 (IL-7) and stem cell growth factor beta (SCGF-ß) were possibly associated with the risk of IgAN according to the IVW approach, with estimated odds ratios (OR) of 1.059 (95 % confidence interval [CI] 1.015 to 1.104, P = 0.008) and 1.043 (95 % CI 1.002 to 1.085, P = 0.037). Five immune traits were identified that might be linked to IgAN risk, each with P-values below 0.01, including natural killer T %T cell (OR = 1.058, 95 % CI: 1.020 to 1.097, P = 0.002), natural killer T %lymphocyte (OR = 1.055, 95 % CI: 1.016 to 1.096, P = 0.006), CD25++ CD8+ T cell %T cell (OR = 1.057, 95 % CI: 1.016 to 1.099, P = 0.006), CD3 on effector memory CD4+ T cell (OR = 1.045, 95 % CI: 1.019 to 1.071, P = 0.001), and CD3 on CD28+ CD45RA+ CD8+ T cell (OR = 1.042, 95 % CI: 1.016 to 1.068, P = 0.001). CD4 on central memory CD4+ T cell might be a protective factor for IgAN (OR = 0.922, 95 % CI: 0.875 to 0.971, P = 0.002). Moreover, IgAN may be implicated in a high risk of elevated granulocyte colony-stimulating factor (G-CSF) (OR = 1.114, 95 % CI 1.002 to 1.239, P = 0.046). CONCLUSION: Our study revealed exposures among typical inflammation markers, inflammatory cytokines, and immune cell signatures that may potentially linked to IgAN risk by MR analysis. This insight may advance our understanding of the etiology of IgAN and support the development of targeted therapeutic strategies.

15.
J Hazard Mater ; 475: 134922, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38885589

ABSTRACT

Effective treatment of industrial wastewater containing complex pollutants, such as nitrate (NO3--N) and organic pollutants, remains a significant challenge to date. Here, a strain Nocardioides sp. ZS2 with denitrification and degradation of p-nitrophenol (PNP) was isolated and its culture conditions were optimized by kinetic analysis. Hydrophilic sponge carriers were prepared using polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), and chitosan (CS) to construct bioreactors. Furthermore, to further enhance the PNP degradation and denitrification performance of bioreactors, Pseudomonas stutzeri GF2 with denitrification capability was introduced. The results revealed that the removal efficiencies of PNP and NO3--N reached 97.9 % and 91.9 %, respectively, when hydraulic retention time (HRT) of 6 h, C/N of 2.0, and pH of 6.5. The bioreactor exhibited stable denitrification performance even with fluctuations in the influent PNP concentration. The potential functional prediction results revealed that the abundance of amino acids, fatty acids, and carbohydrates increased as the influent C/N decreased, reflecting a tendency of the microbial community to adjust carbon source utilization to maintain cell growth, metabolic balance, and resist adverse C/N environments. This research provides new insights into the effective removal of organic pollutants and NO3--N in wastewater treatment.


Subject(s)
Bioreactors , Denitrification , Hydrophobic and Hydrophilic Interactions , Nitrophenols , Water Pollutants, Chemical , Nitrophenols/metabolism , Nitrophenols/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Chitosan/chemistry , Pseudomonas stutzeri/metabolism , Polyvinyl Alcohol/chemistry , Carboxymethylcellulose Sodium/chemistry , Carboxymethylcellulose Sodium/metabolism , Biodegradation, Environmental , Nitrates/metabolism , Wastewater/chemistry , Actinobacteria/metabolism , Waste Disposal, Fluid/methods
16.
Nanoscale ; 16(25): 12142-12148, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38832816

ABSTRACT

The application of resistive random-access memory (RRAM) in storage and neuromorphic computing has attracted widespread attention. Benefitting from the quantum effect, transition metal dichalcogenides (TMD) quantum dots (QDs) exhibit distinctive optical and electronic properties, which make them promising candidates for emerging RRAM. Here, we show a high-performance forming-free flexible RRAM based on high-quality tin disulfide (SnS2) QDs prepared by a facile liquid phase method. The RRAM device demonstrates high flexibility with a large on/off ratio of ∼106 and a long retention time of over 3 × 104 s. The excellent switching behavior of the memristor is elucidated by a charge trapping/de-trapping mechanism where the SnS2 QDs act as charge trapping centers. This study is of significance for the understanding and development of TMD QD-based flexible memristors.

17.
J Neuroendocrinol ; : e13422, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38894508

ABSTRACT

The objective of this study is to conduct a bibliometric analysis of research trends in hyperprolactinemia from 2011 to 2023. This analysis aims to provide researchers with insights into the current hotspots and frontiers related to hyperprolactinemia. It is worth noting that there are currently no existing reports on bibliometric analyses of hyperprolactinemia. The Social Science Citation Index (SSCI) and Science Citation Index Expanded (SCIE) databases of the Web of Science Core Collection were systematically searched for "articles" and "review articles" related to the topic of hyperprolactinemia from 2011 to 2023. VOSviewer was employed to conduct bibliometric analysis, aiming to analyze the research trends in hyperprolactinemia over the past 13 years. A total of 1865 eligible articles were retrieved, with contributions from 9544 scholars representing 83 countries in the field of research. The United States had the highest number of publications, followed by China. The keywords were categorized into six clusters: (1) etiology of hyperprolactinemia and other related endocrine and metabolic diseases. (2) Hyperprolactinemia and mental illness. (3) Diagnosis and management of hyperprolactinemia. (4) Treatment of hyperprolactinemia and prolactinoma. (5) Detection of macroprolactin and macroprolactinemia. (6) Symptoms of male hyperprolactinemia. Over the past 13 years, there has been a consistent and slightly increasing trend in the number of research papers focusing on hyperprolactinemia. The primary areas of research focus are centered around the diagnosis and treatment of hyperprolactinemia caused by antipsychotic drugs or prolactinoma.

18.
J Org Chem ; 89(12): 9056-9062, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38857440

ABSTRACT

A palladium(II)-catalyzed Markovnikov hydroboration of aryl alkenes with readily available bis(pinacolato)diboron (B2pin2) is reported. The reaction proceeded with low catalyst loading (0.5 mol %) in the absence of N- or P-containing ligands, affording the products in up to 90% yield. Trifluoracetic acid serves as the hydrogen source, enabling the synthesis of benzylic boronic esters under mild ambient conditions.

19.
J Hazard Mater ; 474: 134784, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38843635

ABSTRACT

Both adsorption and oxidation occur and contribute to organics removal in carbonaceous materials based advanced oxidation processes, while the correction of adsorption and oxidation, and the role of adsorption in the veritable removal of organic are not clear. Herein, we investigated the performance of carbamazepine (CBZ) removal by peroxymonosulfate (PMS) activated by magnetic Fe-doped biochar through two models of pre-adsorption oxidation and synchronous adsorption oxidation processes. The adsorption process was better fitted by pseudo-second-order kinetic model and the adsorption mechanism was obtained by comprehensive analysis of equilibrium adsorption capacities, surface functional groups, specific surface area, pore volume, and ID/IG value. It is noted that pre-adsorption highly inhibited the further oxidation of CBZ in 0.5Fe@LSBC700/PMS system due to the occupied catalytic active sites. Total CBZ removal in pre-adsorption oxidation (45 %) was inferior to synchronous adsorption oxidation (∼100 %), as well as the veritable CBZ oxidation removal of 27 % for pre-adsorption oxidation vs ∼100 % in synchronous adsorption oxidation at 30 min. Oxidation degradation of CBZ based on radical oxidation was identified by quenching experiments and electron paramagnetic resonance measurements. This work is conducive to identifying the role of adsorption during the removal of organics in the adsorption-oxidation process, as well as veritable adsorption and oxidation removal of organics.

20.
Ecotoxicol Environ Saf ; 280: 116545, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850709

ABSTRACT

Isoprenoid metabolism and its derivatives took part in photosynthesis, growth regulation, signal transduction, and plant defense to biotic and abiotic stresses. However, how aluminum (Al) stress affects the isoprenoid metabolism and whether isoprenoid metabolism plays a vital role in the Citrus plants in coping with Al stress remain unclear. In this study, we reported that Al-treatment-induced alternation in the volatilization rate of monoterpenes (α-pinene, ß-pinene, limonene, α-terpinene, γ-terpinene and 3-carene) and isoprene were different between Citrus sinensis (Al-tolerant) and C. grandis (Al-sensitive) leaves. The Al-induced decrease of CO2 assimilation, maximum quantum yield of primary PSII photochemistry (Fv/Fm), the lower contents of glucose and starch, and the lowered activities of enzymes involved in the mevalonic acid (MVA) pathway and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway might account for the different volatilization rate of isoprenoids. Furthermore, the altered transcript levels of genes related to isoprenoid precursors and/or derivatives metabolism, such as geranyl diphosphate (GPP) synthase (GPPS) in GPP biosynthesis, geranylgeranyl diphosphate synthase (GGPPS), chlorophyll synthase (CHS) and GGPP reductase (GGPPR) in chlorophyll biosynthesis, limonene synthase (LS) and α-pinene synthase (APS) in limonene and α-pinene synthesis, respectively, might be responsible for the different contents of corresponding products in C. grandis and C. sinensis. Our data suggested that isoprenoid metabolism was involved in Al tolerance response in Citrus, and the alternation of some branches of isoprenoid metabolism could confer different Al-tolerance to Citrus species.


Subject(s)
Aluminum , Bicyclic Monoterpenes , Citrus , Limonene , Photosynthesis , Plant Leaves , Terpenes , Aluminum/toxicity , Terpenes/metabolism , Citrus/metabolism , Citrus/drug effects , Limonene/metabolism , Photosynthesis/drug effects , Bicyclic Monoterpenes/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects , Stress, Physiological/drug effects , Monoterpenes/metabolism , Hemiterpenes/metabolism , Cyclohexenes/metabolism , Sugar Phosphates/metabolism , Butadienes/metabolism , Erythritol/analogs & derivatives , Erythritol/metabolism , Mevalonic Acid/metabolism , Cyclohexane Monoterpenes , Citrus sinensis/metabolism , Citrus sinensis/drug effects , Citrus sinensis/genetics , Chlorophyll/metabolism , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/genetics , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...