Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(5): e2317418121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38252830

ABSTRACT

Ovulation is essential for reproductive success, yet the underlying cellular and molecular mechanisms are far from clear. Here, we applied high-resolution spatiotemporal transcriptomics to map out cell type- and ovulation stage-specific molecular programs as function of time during follicle maturation and ovulation in mice. Our analysis revealed dynamic molecular transitions within granulosa cell types that occur in tight coordination with mesenchymal cell proliferation. We identified molecular markers for the emerging cumulus cell fate during the preantral-to-antral transition. We describe transcriptional programs that respond rapidly to ovulation stimulation and those associated with follicle rupture, highlighting the prominent roles of apoptotic and metabolic pathways during the final stages of follicle maturation. We further report stage-specific oocyte-cumulus cell interactions and diverging molecular differentiation in follicles approaching ovulation. Collectively, this study provides insights into the cellular and molecular processes that regulate mouse ovarian follicle maturation and ovulation with important implications for advancing therapeutic strategies in reproductive medicine.


Subject(s)
Ascomycota , Ovary , Female , Animals , Mice , Ovulation , Ovarian Follicle , Reproduction , Granulosa Cells
2.
bioRxiv ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37662215

ABSTRACT

Ovulation is essential for reproductive success, yet the underlying cellular and molecular mechanisms are far from clear. Here, we applied high-resolution spatiotemporal transcriptomics to map out cell-type- and ovulation-stage-specific molecular programs as function of time during follicle maturation and ovulation in mice. Our analysis revealed dynamic molecular transitions within granulosa cell types that occur in tight coordination with mesenchymal cell proliferation. We identified new molecular markers for the emerging cumulus cell fate during the preantral-to-antral transition. We describe transcriptional programs that respond rapidly to ovulation stimulation and those associated with follicle rupture, highlighting the prominent roles of apoptotic and metabolic pathways during the final stages of follicle maturation. We further report stage-specific oocyte-cumulus cell interactions and diverging molecular differentiation in follicles approaching ovulation. Collectively, this study provides insights into the cellular and molecular processes that regulate mouse ovarian follicle maturation and ovulation with important implications for advancing therapeutic strategies in reproductive medicine.

3.
Endocr Rev ; 39(1): 1-20, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29028960

ABSTRACT

The major goal of this review is to summarize recent exciting findings that have been published within the past 10 years that, to our knowledge, have not been presented in detail in previous reviews and that may impact altered follicular development in polycystic ovarian syndrome (PCOS) and premature ovarian failure in women. Specifically, we will cover the following: (1) mouse models that have led to discovery of the derivation of two precursor populations of theca cells in the embryonic gonad; (2) the key roles of the oocyte-derived factor growth differentiation factor 9 on the hedgehog (HH) signaling pathway and theca cell functions; and (3) the impact of the HH pathway on both the specification of theca endocrine cells and theca fibroblast and smooth muscle cells in developing follicles. We will also discuss the following: (1) other signaling pathways that impact the differentiation of theca cells, not only luteinizing hormone but also insulinlike 3, bone morphogenic proteins, the circadian clock genes, androgens, and estrogens; and (2) theca-associated vascular, immune, and fibroblast cells, as well as the cytokines and matrix factors that play key roles in follicle growth. Lastly, we will integrate what is known about theca cells from mouse models, human-derived theca cell lines from patients who have PCOS and patients who do not have PCOS, and microarray analyses of human and bovine theca to understand what pathways and factors contribute to follicle growth as well as to the abnormal function of theca.


Subject(s)
Cell Differentiation , Fertility , Theca Cells/physiology , Animals , Corpus Luteum/physiology , Female , Gonads/embryology , Growth Differentiation Factor 9/metabolism , Hedgehog Proteins/metabolism , Humans , Ovarian Diseases/metabolism
4.
Cancer Res ; 76(8): 2206-18, 2016 04 15.
Article in English | MEDLINE | ID: mdl-26964623

ABSTRACT

Mutations in the tumor protein p53 (TP53) are the most frequently occurring genetic events in high-grade ovarian cancers, especially the prevalence of the Trp53(R172H)-mutant allele. In this study, we investigated the impact of the Trp53(R172H)-mutant allele on epithelial ovarian cancer (EOC) in vivo We used the Pten/Kras(G12D)-mutant mouse strain that develops serous EOC with 100% penetrance to introduce the mutant Trp53(R172H) allele (homolog for human Trp53(R172H)). We demonstrate that the Trp53(R172H) mutation promoted EOC but had differential effects on disease features and progression depending on the presence or absence of the wild-type (WT) TP53 allele. Heterozygous WT/Trp53(R172H) alleles facilitated invasion into the ovarian stroma, accelerated intraperitoneal metastasis, and reduced TP53 transactivation activity but retained responsiveness to nutlin-3a, an activator of WT TP53. Moreover, high levels of estrogen receptor α in these tumors enhanced the growth of both primary and metastatic tumors in response to estradiol. Ovarian tumors homozygous for Trp53(R172H) mutation were undifferentiated and highly metastatic, exhibited minimal TP53 transactivation activity, and expressed genes with potential regulatory functions in EOC development. Notably, heterozygous WT/Trp53(R172H) mice also presented mucinous cystadenocarcinomas at 12 weeks of age, recapitulating human mucinous ovarian tumors, which also exhibit heterozygous TP53 mutations (∼50%-60%) and KRAS mutations. Therefore, we present the first mouse model of mucinous tumor formation from ovarian cells and supporting evidence that mutant TP53 is a key regulator of EOC progression, differentiation, and responsiveness to steroid hormones. Cancer Res; 76(8); 2206-18. ©2016 AACR.


Subject(s)
Cell Differentiation/genetics , Estradiol/physiology , Genes, p53 , Neoplasm Metastasis/genetics , Neoplasms, Glandular and Epithelial/pathology , Ovarian Neoplasms/pathology , Animals , Carcinoma, Ovarian Epithelial , Disease Progression , Heterozygote , Mice , Neoplasms, Glandular and Epithelial/genetics , Ovarian Neoplasms/genetics
5.
Biol Reprod ; 94(2): 44, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26740594

ABSTRACT

Ovulation and luteinization are initiated in preovulatory follicles by the luteinizing hormone (LH) surge; however, the signaling events that mediate LH actions in these follicles remain incompletely defined. Two key transcription factors that are targets of LH surge are C/EBPalpha and C/EBPbeta, and their depletion in granulosa cells results in complete infertility. Microarray analyses of these mutant mice revealed altered expression of a number of genes, including growth arrest specific-1 (Gas1). To investigate functions of Gas1 in ovulation- and luteinization-related processes, we crossed Cyp19a1-Cre and Gas1(flox/flox) mice to conditionally delete Gas1 in granulosa and cumulus cells. While expression of Gas1 is dramatically increased in granulosa and cumulus cells around 12-16 h post-human chorionic gonadotropin (hCG) stimulation in wild-type mice, this increase is abolished in Cebpa/b double mutant and in Gas1 mutant mice. GAS1 is also dynamically expressed in stromal cells of the ovary independent of C/EBPalpha/beta. Female Gas1 mutant mice are fertile, exhibit enhanced rates of ovulation, increased fertility, and higher levels of Areg and Lhcgr mRNA in granulosa cells. The morphological appearance and vascularization of corpora lutea appeared normal in these mutant females. Interestingly, levels of mRNA for a number of genes (Cyp11a1, Star, Wnt4, Prlr, Cd52, and Sema3a) associated with luteinization are decreased in corpora lutea of Gas1 mutant mice as compared with controls at 24 h post-hCG; these differences were no longer detectable by 48 h post-hCG. The C/EBP target Gas1 is induced in granulosa cells and is associated with ovulation and luteinization.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Proteins/genetics , Cell Cycle Proteins/genetics , Corpus Luteum/metabolism , Ovulation/genetics , Animals , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Cumulus Cells/metabolism , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Granulosa Cells/metabolism , Luteinization/genetics , Luteinization/metabolism , Mice , Mice, Knockout , Ovulation/metabolism
6.
Mol Endocrinol ; 29(7): 1006-24, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26061565

ABSTRACT

The forkhead box (FOX), FOXO1 and FOXO3, transcription factors regulate multiple functions in mammalian cells. Selective inactivation of the Foxo1 and Foxo3 genes in murine ovarian granulosa cells severely impairs follicular development and apoptosis causing infertility, and as shown here, granulosa cell tumor (GCT) formation. Coordinate depletion of the tumor suppressor Pten gene in the Foxo1/3 strain enhanced the penetrance and onset of GCT formation. Immunostaining and Western blot analyses confirmed FOXO1 and phosphatase and tensin homolog (PTEN) depletion, maintenance of globin transcription factor (GATA) 4 and nuclear localization of FOXL2 and phosphorylated small mothers against decapentaplegic (SMAD) 2/3 in the tumor cells, recapitulating results we observed in human adult GCTs. Microarray and quantitative PCR analyses of mouse GCTs further confirmed expression of specific genes (Foxl2, Gata4, and Wnt4) controlling granulosa cell fate specification and proliferation, whereas others (Emx2, Nr0b1, Rspo1, and Wt1) were suppressed. Key genes (Amh, Bmp2, and Fshr) controlling follicle growth, apoptosis, and differentiation were also suppressed. Inhbb and Grem1 were selectively elevated, whereas reduction of Inha provided additional evidence that activin signaling and small mothers against decapentaplegic (SMAD) 2/3 phosphorylation impact GCT formation. Unexpectedly, markers of Sertoli/epithelial cells (SRY [sex determining region Y]-box 9/keratin 8) and alternatively activated macrophages (chitinase 3-like 3) were elevated in discrete subpopulations within the mouse GCTs, indicating that Foxo1/3/Pten depletion not only leads to GCTs but also to altered granulosa cell fate decisions and immune responses. Thus, analyses of the Foxo1/3/Pten mouse GCTs and human adult GCTs provide strong evidence that impaired functions of the FOXO1/3/PTEN pathways lead to dramatic changes in the molecular program within granulosa cells, chronic activin signaling in the presence of FOXL2 and GATA4, and tumor formation.


Subject(s)
Carcinogenesis/pathology , Forkhead Transcription Factors/metabolism , Granulosa Cell Tumor/metabolism , PTEN Phosphohydrolase/metabolism , Adult , Animals , Carcinogenesis/metabolism , Female , Forkhead Box Protein O1 , Forkhead Box Protein O3 , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gonadotropins/pharmacology , Granulosa Cell Tumor/genetics , Granulosa Cell Tumor/pathology , Humans , Immunohistochemistry , Integrases/metabolism , Keratin-8/metabolism , Lectins/metabolism , Mice, Knockout , Middle Aged , Models, Biological , SOX9 Transcription Factor/metabolism , Smad Proteins/metabolism , beta-N-Acetylhexosaminidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...