Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 454: 139811, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38820631

ABSTRACT

Autophagy (AU) and programmed cell death (PCD) are dynamically regulated during tomato fruit defense against Botrytis cinerea, which are also manipulated by pathogenic effectors to promote colonization. Present study demonstrated that the enhanced defense induced by transient inhibition on AU by hydroxychloroquine (HCQ) facilitated the restriction of B. cinerea lesion on postharvest tomato. Pre-treatment of 2 mM (16.08 ± 3.42 cm at 7 d) and 6 mM (7.80 ± 2.39 cm at 7 d) HCQ inhibited the lesion development of B. cinerea compared with Mock treatment (50.02 ± 7.69 cm at 7 d). Transient inhibition of AU induced expression of fungal defense and transcriptional regulation related genes, but attenuated reactive oxygen species (ROS) burst gene expression. The ROS-induced PCD was compromised by HCQ with promoted ROS scavenging. The transient pre-treatment of HCQ slightly inhibited AU which triggered the feedback loop that enhanced the autophagic activity defensing against B. cinerea infection.


Subject(s)
Autophagy , Botrytis , Plant Diseases , Reactive Oxygen Species , Solanum lycopersicum , Botrytis/drug effects , Solanum lycopersicum/microbiology , Solanum lycopersicum/immunology , Solanum lycopersicum/chemistry , Reactive Oxygen Species/metabolism , Autophagy/drug effects , Plant Diseases/microbiology , Apoptosis/drug effects , Fruit/chemistry , Fruit/microbiology , Disease Resistance , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Int J Biol Macromol ; 265(Pt 1): 130422, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423429

ABSTRACT

The evolution of the starch fine structure during growth and its impact on the gelatinization behavior of cassava starch (CS) was investigated by isolating starch from South China 6068 (SC6068) cassava harvested from the 4th to 9th growth period. During growth, the short-range ordered structure, crystallinity as well as particle size distribution of starch were increased. Meanwhile, the starch molecular size and amylopectin (AP) proportion increased, while the proportion of amylose (AM) exhibited a decreasing tendency. The chains of short-AM (X ~ 100-1000) were mainly significantly reduced, whereas the short and medium-AP chains (X ~ 6-24) had the most increment in AP. The solubility, thermal stability, shear resistance, and retrogradation resistance of starch were enhanced after gelatinized under the influence of the results mentioned above. This study presented a deeper insight into the variation of starch fine structure during growth and its influence on gelatinization behavior, which would provide a theoretical basis for starch industrial applications.


Subject(s)
Manihot , Manihot/chemistry , Starch/chemistry , Amylopectin/chemistry , Amylose/chemistry , Solubility
3.
Sci Total Environ ; 858(Pt 3): 159916, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36356727

ABSTRACT

In the production process of industrial products, different product structures, batches, and the selection of different production methods directly affect the resource utilization, distribution, consumption, and carbon emission generation in the production process. In this study, a strategy to select low carbon production methods for product structure and batch is proposed to advance resource management and carbon emission reduction in manufacturing production processes. Specifically, taking a typical casting industry as an example, we analyze the two factors of product structures and batches on the resource consumption and environmental impact of the production process to establish a production process carbon emission model; using forty casting products as the research objects, the clustering algorithm and multiple linear regression analysis method are used to establish the influence relationship between product structure, batch, and production carbon emissions. Based on the characteristics of product structure and batch, a strategy is proposed for selecting a low carbon production method. The study shows that in sand casting production, the 3D printing method is more low carbon for small volumes, reducing 56.057 % of carbon emissions. However, traditional technology is more low carbon for large volumes, which can reduce at least 6.778 % of carbon emissions. In addition, as the number of casting batches increases, the advantage of low carbon in traditional casting technology will rise. The results of this study may provide a new way to help the manufacturing industry develop and optimize the environmental impact of the product manufacturing process.


Subject(s)
Carbon , Environmental Pollution , Manufacturing Industry , Environmental Pollution/prevention & control
4.
Sci Total Environ ; 816: 151542, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-34767884

ABSTRACT

Unconventional machining of WEDM (Wire Electrical Discharge Machining) is playing an increasingly important role in the manufacturing industry. The processing efficiency and resource consumption of this method are research hotspots from the perspective of sustainable development. Energy and CO2 emissions modeling of process machining have been recognized as an effective and economical ways to achieve energy-saving, emission-reducing and to improve process efficiency. However, the predictive modeling of energy and CO2 emissions in unconventional machining of WEDM machining has not been thoroughly fully studied. This paper proposes a predictive model of energy consumption and CO2 emissions in WEDM process considering process characteristics. The application of the energy and CO2 emissions model proposed in this paper in an example shows that the model's energy consumption prediction accuracy for single part processing reaches 96.5%, and the energy consumption prediction accuracy for batch processing is above 99%. A new standard for cutting fluid substitution with the best machining stability and energy consumption is proposed. In the example, it is also shown that the corners in the geometric structure will reduce the processing energy consumption. The smaller the number of single folding angles, the more energy consumption will be reduced. The processing energy consumption per unit area has a greater deviation when the thickness is low, and the thickness of the workpiece will also affect the life of the electrode wire. It depends on the number of multi-layer stacks and the life of electrode wires; the quality of machine tool auxiliary materials has a greater impact on energy consumption, with a difference of up to 40% in energy consumption. The results of this research can better understand the energy consumption and CO2 emissions characteristics of the unconventional machining of WEDM.

5.
Sci Total Environ ; 722: 137897, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32349201

ABSTRACT

The unconventional machining (UCM) processes are usually energy-intensive and mainly used to process materials with characteristics of high-quality requirements and complex geometries, etc. In response to the policy of energy-saving and emission reduction in the UCM, this paper reviews the relative literature over the last decade with a focus on Wire Electrical Discharge Machining (WEDM), and a structured analysis of the impact factors is adopted in terms of the WEDM machine parts, workpiece, processing parameters, human resources consumption, and production management. On this basis, the prediction and reduction methods of energy consumption in WEDM are systematically summarized. The result shows that the energy-saving and emission reduction methods in the unconventional machining have focused primarily on the optimization design of machine tools, process modeling and optimization, and production management. Among which, these approaches such as process parameters modeling, machining state monitoring, and the significant components designing and optimizing have been widely studied. Besides, the existing research on the resource allocation management of processing tasks is mainly about workshop scheduling algorithm and process sequencing optimization. Finally, the sustainable manufacturing methods considering multiple aspects are discussed from the perspective of WEDM, which has great significance to the research direction and sustainability of the UCM.

6.
J Nanosci Nanotechnol ; 13(7): 5154-7, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23901545

ABSTRACT

We have fabricated flexible thin-film transistors (TFTs) on plastic substrates using Aluminum-doped ZnO (AZO) as an active channel layer at room temperature. The AZO-TFTs showed n-channel device characteristics and operated in enhancement mode. The device shows a threshold voltage of 1.3 V, an on/off ratio of 2.7 x 10(7), a field effect mobility of 21.3 cm2/V x s, a subthreshold swing of 0.23 V/decade, and the off current of less than 10(-12) A at room temperature. Recently, the flexible displays have become a very hot topic. Flexible thin film transistors are key devices for realizing flexible displays. We have investigated AZO-TFT on flexible plastic substrate, and high performance flexible TFTs have been obtained.


Subject(s)
Aluminum/chemistry , Metal Nanoparticles/chemistry , Nanotechnology/instrumentation , Transistors, Electronic , Zinc Oxide/chemistry , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...